Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(\sqrt{5X-1}\ge0\) => \(\sqrt{5X-1}+\left(1,1\right)^2\ge\left(1,1\right)^2\) Vậy GTNN là 1,21
b) Ta có
\(\sqrt{11-3X}\ge0\) =>\(-\sqrt{11-3X}\le0\) =>\(1,21-\sqrt{11-3X}\le1,21\) GTLN là 1,21
\(H\left(x\right)=9x^4-3x^3-11x^2-7x+12\)
\(K\left(x\right)=-8x^4+10x^3+4x^2-7x-12\)
\(A\left(x\right)=H\left(x\right)-K\left(x\right)\)
\(=17x^4-10x^3-15x^2+24\)
Để \(A\left(x\right)=x^4-13x^3-14x^2\) nên \(17x^4-10x^3-15x^2+24=x^4-13x^3-14x^2\)
\(\Leftrightarrow16x^4+3x^3-x^2+24=0\)
Đến đây mình bí rồi, xin lỗi bạn!
sắp xếp:
C= \(x^5\) + 3\(x^4\) - 2\(x^3\) - 9\(x^2\) + 11x - 6
B= \(x^5\) + \(3x^4\) - \(2x^3\) - \(10x^2\) +9x + 4
B= \(x^5\) + \(3x^4\) - \(2x^3\) - \(10x^2\) +9x + 4
+
- C= \(x^5\) - 3\(x^4\) + 2\(x^3\) + 9\(x^2\) - 11x + 6
M = \(2x^5\) - \(x^2\) - 2x + 10
Ta có M = B - C
\(\Rightarrow M=[3x^4+x^5-2\left(x^3+4\right)-10x^2+9x]\\ \\ -\left(x^5-2x^3+3x^4-9x^2+11x-6\right)\)
\(\Rightarrow M=3x^4+x^5-2x^3+4-10x^2+9x\\ -x^5+2x^3-3x^4+9x^2-11x+6\)
\(\Rightarrow M=\left(3x^4-3x^4\right)+\left(x^5-x^5\right)+\left(-2x^3+2x^3\right)\\ +\left(4+6\right)+\left(-10x^2+9x^2\right)+\left(9x-11x\right)\)
\(\Rightarrow M=10-x^2-2x\)
Vậy \(M=10-x^2-2x\)
\(a,\frac{-9}{x}=\frac{-9}{\frac{4}{49}}\)
\(\Rightarrow x=\frac{4}{49}\)
\(b,\left|x-2\right|+\left|x+3\right|=0\)
\(\left|x-2\right|\ge0;\left|x+3\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=-3\end{cases}vl}}\)
\(c,3x^2+9x+6=0\)
\(\Rightarrow3x^2+3x+6x+6=0\)
\(\Rightarrow3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow\left(3x+6\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+6=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
\(d,x^2-7x-8=0\)
\(\Rightarrow x^2+x-8x-8=0\)
\(\Rightarrow x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Rightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
Bài 1:
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
c) \(x^2-10x+16=x^2-2x-8x+16=x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(x-8\right)\)
d) \(4x^2+9x+5=4x^2+4x+5x+5=4x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(4x+5\right)\)
Bài 2:
không rõ đề --> k lm
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a: \(=-3\left(x^2+3x+\dfrac{25}{3}\right)\)
\(=-3\left(x^2+3x+\dfrac{9}{4}+\dfrac{73}{12}\right)\)
\(=-3\left(x+\dfrac{3}{2}\right)^2-\dfrac{73}{4}< =-\dfrac{73}{4}\)
Dấu '=' xảy ra khi x=-3/2
b: \(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=1/2
c: \(=-\left(x^2-7x-12\right)\)
\(=-\left(x^2-7x+\dfrac{49}{4}-\dfrac{97}{4}\right)\)
\(=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{97}{4}< =\dfrac{97}{4}\)
Dấu '=' xảy ra khi x=7/2