\(\frac{x}{x^2+2}\)với x>0

TÌm giá trị lớn nhất của biểu thức sau

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

\(F=\frac{x}{x^2+2}\)

với x > 0, áp dụng bđt Cauchy ta có :

\(x^2+2\ge2\sqrt{x^2+2}=2x\sqrt{2}\)

=> \(\frac{1}{x^2+2}\le\frac{1}{2x\sqrt{2}}\)

=> \(\frac{x}{x^2+2}\le\frac{1}{2\sqrt{2}}\)( x > 0 nên khi nhân vào cả hai vế bđt giữ chiều )

hay \(F\le\frac{1}{2\sqrt{2}}\)

đẳng thức xảy ra khi \(x=\sqrt{2}\)

vậy maxF = ​\(\frac{1}{2\sqrt{2}}\)​, đạt được khi ​\(x=\sqrt{2}\)

14 tháng 1 2021

nhầm dòng 3 xíu :v 

\(x^2+2\ge2\sqrt{2x^2}=2x\sqrt{2}\)

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

14 tháng 1 2020

f(x) = x3 +3/x = x3 + 1/x +1/x +1/x 

cô si 4 số làm mất x là xong

\(M=\frac{2x+1+x^2+2-x^2-2}{x^2+2}=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}\)

\(M=\frac{\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\)

M lớn nhất khi \(\frac{\left(x-1\right)^2}{x^2+2}\)nhỏ nhất 

Vì \(\left(x-1\right)^2\ge0\forall x\) và \(\left(x^2+2\right)\ge0\forall x\)nên \(\frac{\left(x+1\right)^2}{x^2+2}\)nhỏ nhất khi \(\left(x+1\right)^2=0\)

Dấu ''='' xảy ra khi \(x-1=0\)  \(\Leftrightarrow\)\(x=1\)

Vậy \(M_{max}=1\)khi \(x=1\)