\(F=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+...+\frac{1}{2^{99}}\)

Bài làm :...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(8F=2^3.F=2^3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+...+\frac{1}{2^{99}}\right)=4+1+\frac{1}{2}+...+\frac{1}{2^{96}}\)

3 tháng 6 2019

Đặt : \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta thấy :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(\frac{1}{7^2}< \frac{1}{6.7}\)

\(.......................\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

Vì \(\frac{1}{6}< \frac{6}{25}< \frac{1}{4}\)nên \(\frac{1}{6}< A< \frac{1}{4}\)hay \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)

~ Hok tốt ~

3 tháng 6 2019

Bài 1:

Đặt  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta có: 

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

Ta có:

\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(\text{đ}pcm\right)\)

Bài 2:

\(a)\)Tách tổng A thành ba nhóm:

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{30}\cdot20+\frac{1}{50}\cdot20+\frac{1}{70}\cdot20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}\)

\(A>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\left(\text{đ}pcm\right)\)

\(b)\)Tách tổng A thành sáu nhóm:

\(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

\(A< \frac{1}{11}\cdot10+\frac{1}{21}\cdot10+\frac{1}{31}\cdot10+\frac{1}{41}\cdot10+\frac{1}{51}\cdot10+\frac{1}{61}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\left(\text{đ}pcm\right)\)

#Sakura

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

9 tháng 5 2021

Ta có : \(A=\frac{1}{1.101}+\frac{1}{2.202}+\frac{1}{3.103}+...+\frac{1}{10.110}\)

=\(\frac{1}{100}.\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{100}{3.103}+...+\frac{100}{10.110}\right)\)

\(\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{10}-\frac{1}{110}\right)\)

\(\frac{1}{100}\cdot\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-\frac{1}{101}-\frac{1}{102}-...-\frac{1}{110}\right)\)

Lại có : B = \(\frac{1}{10}.\left(\frac{10}{1.11}+\frac{10}{2.12}+\frac{10}{3.13}+...+\frac{10}{100.110}\right)\)

\(\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\frac{1}{10}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-\frac{1}{101}-\frac{1}{102}-...-\frac{1}{110}\right)\)

Khi đó \(A:B=\frac{A}{B}=\frac{\frac{1}{100}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-\frac{1}{101}-\frac{1}{102}-...-\frac{1}{110}\right)}{\frac{1}{10}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}-\frac{1}{101}-\frac{1}{102}-...-\frac{1}{110}\right)}=\frac{1}{10}\)

13 tháng 7 2020

bài 1 tắt quá

13 tháng 7 2020

Câu 1:

Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)

\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy:.............

Câu 2:

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)

\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)

\(=\frac{100}{2}=50\)

\(P=...\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-...-\frac{1}{2}+1\)

\(=\frac{1}{99}-1=\frac{-98}{99}\)

\(M=...\)

\(=\frac{2}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+...+\frac{64}{64}+\frac{1}{64}-7\)

\(=1+1+1+1+1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-7\)

\(=\frac{1+2+2^2+2^3+2^4+2^5}{2^6}-1\)

\(=\frac{2^6-1}{2^6}-1=1-\frac{1}{2^6}-1=-\frac{1}{2^6}\)