Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn phân tích biểu thức thành nhân tử rồi xét :
Nếu >0 thì các nhân tử phải cùng âm hoặc dương
nếu <0 thì các nhân tử trái dấu
tương tự như phân số
nếu >0 thì tử và mẫu cùng dấu
nếu <0 thì trái dấu
:) chúc bạn làm tốt nha dễ mà
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
a) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
Ta có \(x^2+1\ge1>0\forall x\)
Để bpt < 0 => 2x( 3x - 5 ) < 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\Rightarrow}0< x< \frac{5}{3}\)
2. \(\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)( loại )
Vậy nghiệm của bất phương trình là 0 < x < 5/3
b) \(\frac{x}{x-2}+\frac{x+2}{x}>2\)( ĐKXĐ : \(x\ne0,x\ne2\))
<=> \(\frac{x}{x-2}+\frac{x+2}{x}-2>0\)
<=> \(\frac{x^2}{x\left(x-2\right)}+\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
<=> \(\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
<=> \(\frac{4x-4}{x\left(x-2\right)}>0\)
\(x\left(x-2\right)>0\Leftrightarrow\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)
\(x\left(x-2\right)< 0\Leftrightarrow0< x< 2\)
Xét các trường hợp
1/ \(\hept{\begin{cases}4x-4>0\\x\left(x-2\right)>0\end{cases}}\)
+) \(\hept{\begin{cases}4x-4>0\\x>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\Leftrightarrow x>2\)
+) \(\hept{\begin{cases}4x-4>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 0\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}4x-4< 0\\x\left(x-2\right)< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Rightarrow0< x< 1\)
Vậy nghiệm của bất phương trình là x > 2 hoặc 0 < x < 1
c) \(\frac{2x-3}{x+5}\ge3\)( ĐKXĐ : \(x\ne-5\))
\(\Leftrightarrow\frac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\frac{2x-3}{x+5}-\frac{3\left(x+5\right)}{\left(x+5\right)}\ge0\)
\(\Leftrightarrow\frac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\frac{-x-18}{x+5}\ge0\)
Xét hai trường hợp
1/ \(\hept{\begin{cases}-x-18\ge0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-18\\x>-5\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}-x-18\le0\\x+5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-18\\x< -5\end{cases}}\Leftrightarrow-18\le x< -5\)
Vậy nghiệm của bất phương trình là \(-18\le x< -5\)
d) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-1}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
c: (3x-2)(x+3)<0
=>x+3>0 và 3x-2<0
=>-3<x<2/3
d: \(\dfrac{x-2}{x-10}>=0\)
=>x-10>0 hoặc x-2<=0
=>x>10 hoặc x<=2
e: \(3x^2+7x+4< 0\)
\(\Leftrightarrow3x^2+3x+4x+4< 0\)
=>(x+1)(3x+4)<0
=>-4/3<x<-1
Ta có : (x - 3)(x - 2) < 0
Nên sảy ra 2 trường hợp : D
Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)
Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
Vậy 2 < x < 3
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
=>(x+3)(x+4)>=0
=>x+3>=0 hoặc x+4<=0
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
=>x-2>0 hoặc x-1<=0
=>x>2 hoặc x<=1
d: \(\dfrac{x+3}{2-x}>=0\)
=>\(\dfrac{x+3}{x-2}< =0\)
=>x+3>=0 và x-2<0
=>-3<=x<2
a) \(5\left(x-2\right)>3\left(x-4\right)\)
\(\Leftrightarrow5x-10>3x-12\)
\(\Leftrightarrow2x>-2\)
\(\Rightarrow x>-1\)
b) \(7\left(x+3\right)< 9\left(x-1\right)\)
\(\Leftrightarrow7x+21< 9x-9\)
\(\Leftrightarrow2x>30\)
\(\Rightarrow x>15\)
c) Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
=> \(2x-5>0\Rightarrow2x>5\Rightarrow x>\frac{5}{2}\)
d) \(x^2-2x+5=\left(x-1\right)^2+4>0\left(\forall x\right)\)
\(\Rightarrow3x-8< 0\Rightarrow3x< 8\Rightarrow x< \frac{8}{3}\)