K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
d.

Áp dụng định lý Menelaus cho tam giác $BDF$ có $A,O,M$ lần lượt thuộc $BD, DF, BF$ và $A,O,M$ thẳng hàng:

$\frac{MF}{MB}.\frac{OD}{OF}.\frac{AB}{AD}=1$

$\Leftrightarrow \frac{MF}{MB}.1.2=1$

$\Leftrightarrow \frac{MF}{MB}=\frac{1}{2}$

$\Rightarrow \frac{BF}{MB}=\frac{3}{2}$

$\Leftrightarrow \frac{BC}{2MB}=\frac{3}{2}$

$\Leftrightarrow BC=3MB$ (đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 1:

Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h) 

 

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Bài 2:

Đổi 1 giờ 48 phút = 1,8 giờ

Độ dài quãng đường AB: $1,8\times 25=45$ (km) 

Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h) 

Cano ngược dòng từ B về A hết:

$45:20=2,25$ giờ = 2 giờ 15 phút.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 1:

a.

$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$

$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$

b.

$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$

$=(x-1)^2(x+1)^2$

c.

$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$

$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$

d.

$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$

$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Bài 2:

a. $(3x+4)^2-(3x-1)(3x+1)=49$

$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$

$\Leftrightarrow (3x+4)^2-(3x)^2=48$

$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$

$\Leftrightarrow 4(6x+4)=48$

$\Leftrightarrow 6x+4=12$

$\Leftrightarrow 6x=8$

$\Leftrightarrow x=\frac{4}{3}$

b. $x^2-4x+4=9(x-2)$

$\Leftrightarrow (x-2)^2=9(x-2)$

$\Leftrightarrow (x-2)(x-2-9)=0$

$\Leftrightarrow (x-2)(x-11)=0$

$\Leftrightarrow x-2=0$ hoặc $x-11=0$

$\Leftrightarrow x=2$ hoặc $x=11$

c.

$x^2-25=3x-15$

$\Leftrightarrow (x-5)(x+5)=3(x-5)$

$\Leftrightarrow (x-5)(x+5-3)=0$

$\Leftrightarrow (x-5)(x+2)=0$

$\Leftrightarrow x-5=0$ hoặc $x+2=0$

$\Leftrightarrow x=5$ hoặc $x=-2$

25 tháng 10 2017

mai mk giúp cho. hôm nay mik bận làm đề cương rồi

okokok

25 tháng 10 2021

ai giải giúp em đi ạ em đang cần gấp lắm ạ 

30 tháng 10 2021

b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)

\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)

Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)

Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)

Mặt khác \(BE\perp AF\)\(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)

Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)

\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))

Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)

\(\Rightarrow BM=EI\)(tính chất hình bình hành)

Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)

c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)

Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F

\(\Rightarrow\widehat{DCF}=45^0\)

\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)

 \(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)

\(\Rightarrow\Delta BCD\)vuông tại C.

Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD

\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)

Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)

Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)

\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.

Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)

\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)

30 tháng 3 2017

(ĐÂY CHỈ LÀ CÁCH CỦA MÌNH THÔI NHA)

d)

Gọi x là độ dài của MN.

Ta có: AH = AK + KH (gt)

=> KH = AH -AK

hay KH = 9,6-3,6 =6

Ta có: SABC = SAMN + SMNBC (gt)

hay \(\dfrac{AK.MN}{2}+\dfrac{KH\left(BC+MN\right)}{2}\) = \(\dfrac{AB.AC}{2}\)

hay \(\dfrac{3,6.x}{2}+\dfrac{6\left(x+20\right)}{2}=\dfrac{12.16}{2}=96\)

\(\Leftrightarrow\) 3,6x + 6x + 120 = 96.2 = 192

\(\Leftrightarrow\) 9.6x = 192 - 120= 72

\(\Leftrightarrow\) x = \(\dfrac{72}{9,6}=7,5\)

SMNCB= \(\dfrac{KH\left(MN.BC\right)}{2}=\dfrac{6\left(7,5+20\right)}{2}=82,5\) (cm2)

B A C H 20 12 16 k AK=6 AH=9,6 M N MN // BC

30 tháng 3 2017

đề giống bọn mk này

bạn tính diện tích ABC xong trừ đi diện tích AMN là ra kết quả là 82,5

Câu 4: 

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

c: Để A=-3 thì x-1=-6

hay x=-5(loại)