\(\left(\frac{3}{\sqrt{2+1}}+\frac{14}{2\sqrt{2-1}}-\frac{4}{2-\sqrt{2}}\right)\left(\sqrt{8+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

\(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\left(ĐK:0\le x\ne\frac{1}{4}\right)\)

\(=\frac{\sqrt{x}-4x+4x-1}{1-4x}:\frac{\left(1+2x\right)+2\sqrt{x}\left(1+2\sqrt{x}\right)+4x-1}{1-4x}\)

\(=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{10x+2\sqrt{x}}=\frac{\sqrt{x}-1}{2\sqrt{x}\left(5\sqrt{x}+1\right)}\)

17 tháng 7 2019

\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Ta có

:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=|2-\sqrt{5}|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2=VP\left(đpcm\right)\)

\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)

Ta có:

\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)

\(=\frac{3+2\sqrt{2}}{2-1}\)

\(=3+2\sqrt{2}=VP\left(đpcm\right)\)

17 tháng 7 2019

c,Bạn xem lại đề

\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

Ta có:

\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)

\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)

\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)

\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)

\(=\frac{8}{5-4}\)

\(=8=VP\left(đpcm\right)\)

14 tháng 6 2019

a) \(-\sqrt{3}\)      b) -10             c)  60               d)  -1             e) 1

27 tháng 8 2019

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)

a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)

\(=\sqrt{3}\left(2+4-5-9\right)\)

\(=-8\sqrt{3}\)

b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)

\(=7-5=2\)

c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))

\(=3-1=2\)

d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)

\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)

\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)

\(=-11\sqrt{2}\)

e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)

\(=3-5=-2\)

g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)

\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))

\(=3-1=2\)