\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

fgdcxynfyjfyj

15 tháng 6 2017

jffxhn

2 tháng 11 2019
https://i.imgur.com/JAloDHn.jpg
2 tháng 11 2019

fail =)mờ mờ ảo ảo

3 tháng 11 2019

\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-c\right)\left(b-a\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^3\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{c^3\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=a+b+c\)

13 tháng 7 2016

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

13 tháng 7 2016

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh

31 tháng 10 2016

cái áp dụng là Schawrts chứ

12 tháng 8 2020

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)