K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4

4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97

A = 98 x 99 x 100 x 97 / 4

A = 98 x 99 x 25 x 97

DD
8 tháng 7 2021

\(E=1\times2\times3+2\times3\times4+3\times4\times5+...+98\times99\times100\)

\(4\times E=1\times2\times3\times4+2\times3\times4\times4+3\times4\times5\times4+...+98\times99\times100\times4\)

\(=1\times2\times3\times4+2\times3\times4\times\left(5-1\right)+3\times4\times5\times\left(6-2\right)+...+98\times99\times100\times\left(101-97\right)\)

\(=1\times2\times3\times4-1\times2\times3\times4+2\times3\times4\times5-...-97\times98\times99\times100+98\times99\times100\times101\)

\(=98\times99\times100\times101\)

\(\Rightarrow E=\frac{98\times99\times100\times101}{4}=24497550\)

15 tháng 3 2016

=1/1x2-1/2x3+1/2x3-1/3x4+...+1/98x99-1/99x100

=1/2-1/9900

=4949/9900

15 tháng 3 2016

Bằng 4949/9900

20 tháng 8 2017
các bn giúp mk nha mk đang cần gấp
20 tháng 8 2017

Ta có:

\(F=1.2.3+2.3.4+...+98.99.100\)

\(\Rightarrow4F=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)

\(\Rightarrow4F=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)

\(\Rightarrow4F=98.99.100.101\Leftrightarrow F=\frac{98.99.100.101}{4}=24497550\)

30 tháng 4 2016

200 nha

30 tháng 4 2016

200 nha 

nhé

17 tháng 8 2018

A =1x2x3 + 2x3x4 +3x4x5+....+ 2010 x2011 x 2012

4A =1x2x3x4 + 2x3x4x4 +3x4x5x4+....+ 2010 x2011 x 2012x4

4A =1x2x3x4 + 2x3x4x(5+1) +3x4x5x(6-2)+....+ 2010 x2011 x 2012x(2013-2009)

4A =1x2x3x4 + 2x3x4x5-1x2x3x4+3x4x5x6-2x3x4x5+....+ 2010 x2011 x 2012x2013-2009x2010x2011x2012

4A = 2010 x2011 x 2012x2013

A = \(\frac{2010\times2011\times2012\times2013}{4}\)

17 tháng 8 2018

đặt S=1.2.3+2.3.4+....+18.19.20

4S=1.2.3.4+2.3.4.(5-1)+.......+18.19.20.(21-17)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+......+18.19.20.21-17.18.19.20

4S=....tự làm nha

24 tháng 3 2022

Ta có:

\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)

\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)

\(A=1+\frac{1}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{1}{4}\)

\(A=\frac{19}{20}< \frac{5}{20}\)

\(A>\frac{1}{4}\)

20 tháng 10 2024

Cyak 3ampo

17 tháng 11 2018

Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)

\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)

\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)

\(=\frac{1}{2}-\frac{1}{992}\)

\(=\frac{495}{992}\)

\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)

17 tháng 11 2018

\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\frac{990}{1984}\)

\(=\frac{990}{3968}=\frac{495}{1984}\)

21 tháng 9 2015

S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\frac{2029104}{4058210}\)

S = \(\frac{1014552}{4058210}\)

13 tháng 8 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)

22 tháng 3 2018

Do not ask why hay quá!

Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)

Ta xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)

 Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)

Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....

\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)

\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)

Vậy .. . .