Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
a: Để hai đường cắt nhau tại trục Ox thì
2<>m và -5/2=-6/m
=>m<>2 và m/6=5/2
=>m=15
b: Để hai đường cắt nhau tại trục Ox thì
m-1<>m và -3/(m-1)=-6/m
=>3/m-1=6/m
=>3m=6m-6
=>-3m=-6
=>m=2
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
a.
\(-2y+x-5=0\Leftrightarrow2y=x-5\Leftrightarrow y=\dfrac{1}{2}x-\dfrac{5}{2}\)
Hai đường thẳng cắt nhau khi:
\(m-2\ne\dfrac{1}{2}\Leftrightarrow m\ne\dfrac{5}{2}\)
b.
\(3x+y=1\Leftrightarrow y=-3x+1\)
Hai đường thẳng song song khi: \(\left\{{}\begin{matrix}m-2=-3\\n\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\n\ne1\end{matrix}\right.\)
c.
Hai đường thẳng trùng nhau khi:
\(\left\{{}\begin{matrix}m-2=2\\n=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=3\end{matrix}\right.\)
1: Để hàm số đồng biến thì m+2>0
hay m>-2
Để hàm số nghịch biến thì m+2<0
hay m<-2
2: Thay x=2 và y=7 vào (d), ta được:
\(2\left(m+2\right)+2m-5=7\)
=>4m-1=7
hay m=2
3: Để hai đường song song thì m+2=3
hay m=1
a: Để hai đường thẳng song song thì m-3=3
hay m=6