K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

*Trong một tam giác:

- Đường trung bình là đường nối 2 trung điểm của 2 cạnh.

- Đường trung tuyến là đường nối từ 1 đỉnh đến trung điểm cạnh đối diện đỉnh đó.

- Đường trung trực là đường vuông góc tại trung điểm của 1 cạnh.

 

1 tháng 1 2024

 Nếu như theo kiến thức lớp 9 chưa học về đồ thị nào khác ngoài đồ thị bậc nhất (là 1 đường thẳng) thì 2 dạng bài này gần như tương đương nhau. Nhưng khi bạn lên cấp III và học những loại đồ thị đường cong bậc hai (ellipse, parabol, hyperbol, đường tròn,...) thì 2 dạng bài này rõ ràng khác xa nhau nhé. (Vì xác định hàm số thì đó có thể là hàm số kiểu gì cũng được, nhưng viết ptđt thì chỉ có liên quan đến đường thẳng thôi.)

18 tháng 12 2023

a: Xét tứ giác AECO có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

=>AECO là tứ giác nội tiếp

=>A,E,C,O cùng thuộc một đường tròn

b: Ta có: ΔOBC cân tại O

mà OF là đường trung tuyến

nên OF là tia phân giác của góc COB

Xét ΔCOF và ΔBOF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}\)

mà \(\widehat{OCF}=90^0\)

nên \(\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

c: Xét (O) có

EA,EC là các tiếp tuyến

=>EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại H và H là trung điểm của AC

Xét ΔAEO vuông tại A có AH là đường cao

nên \(OH\cdot OE=OA^2\)

=>\(4\cdot OH\cdot OE=4\cdot OA^2=\left(2\cdot OA\right)^2=AB^2\)

10 tháng 4 2020

Gọi E là giao của AC và PB, F là giao của AB và PC

Qua P kẻ đường thẳng d song song với BC

Giả sử E và F lần luợt là giao của AC và AB với d

Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'

Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)

Gọi I là giao của HQ và AB; K là giao của HR và AC

Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)

\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK

Từ (1) => PM _|_ QR hay PA _|_ QR

Gọi S là giao RA và PB

\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)

có tam giác BHQ đồng dạng với tam giác AHE 

=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp

Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)

Từ (1) (2) => A là trực tâm tam giác PQR

29 tháng 12 2023

a: Xét (O) có

DK,DM là các tiếp tuyến

Do đó: OD là phân giác của gócMOK và DM=DK

Xét (O) có

EK,EN là các tiếp tuyến

Do đó: EK=EN và OE là phân giác của góc KON

Ta có: DE=DK+KE

mà DK=DM

và EK=EN

nên DE=DM+EN

b: Ta có: DM=DK

=>D nằm trên đường trung trực của MK(1)

Ta có: OM=OK

=>O nằm trên đường trung trực của MK(2)

Từ (1) và (2) suy ra DO là đường trung trực của MK

=>DO\(\perp\)MK

Xét (O) có

ΔMKN nội tiếp

MN là đường kính

Do đó: ΔMKN vuông tại K

=>MK\(\perp\)KN

Ta có: MK\(\perp\)KN

MK\(\perp\)OD

Do đó: OD//NK