Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần 1 bạn tự vẽ nhé (dùng bang giá trị)
2)Hoành độ giao điểm là ngiệm của phương trình:
2x2=4x-2
Để (d) tiếp xúc(P)<=>delta=0<=>x=1
vậy... (bạn tự viết nốt nhé!!!)

bài này em bit cách làm:
tiếp tuyến tức là có 1 nghiệm chung, vậy ta có:
4x2 = -2x + m
cj cho Δ = 0 là tính dc m

\(1.pt:x^2-4x+m-3=0\)
\(\Delta=\left(-4\right)^2-4.1.\left(m-3\right)=28-4m\)
Để pt trên có nghiệm thì \(28-4m\ge0\Leftrightarrow-4m\ge-28\Leftrightarrow m\le7\)
Với các giá trị \(m\le7\) thì pt trên có nghiệm ( có nghiệm kép hoặc 2 nghiệm phân biệt)
\(2.\left\{{}\begin{matrix}\left(P\right):y=\frac{1}{2}x^2\\\left(d\right):y=2x-m\end{matrix}\right.\)
Tọa độ giao điểm của (P) và (d) là nghiệm của hpt:
\(\left\{{}\begin{matrix}y=\frac{1}{2}x^2\\y=2x-m\end{matrix}\right.\Leftrightarrow\frac{1}{2}x^2-2x+m=0\left(\alpha\right)\)
Xét \(pt\left(\alpha\right):\Delta=\left(-2\right)^2-\frac{4.1}{2}.m=4-2m\)
a. Để \(\left(P\right)tx\left(d\right)\) thì \(\Delta=0\Leftrightarrow4-2m=0\Leftrightarrow m=2\)
b. Để (P) cắt (d) tại 2 điểm phần biệt thì \(\Delta>0\Leftrightarrow4-2m>0\Leftrightarrow m< 2\)
c. Để (P) và (d) không có điểm chung thì \(\Delta< 0\Leftrightarrow4-2m< 0\Leftrightarrow m>2\)

Phương trình đường thẳng (d1) có dạng y=ax+b
Vì (d1)//(d) \(\Leftrightarrow\hept{\begin{cases}a=4\\b\ne9\end{cases}\Rightarrow y=4x+b}\)
Phương trình hoành độ giao điểmcủa (d1) và (P) \(\Leftrightarrow x^2=4x+b\Leftrightarrow x^2-4x-b=0\left(1\right)\)
Vì: (d1) tiếp xúc (P) \(\Rightarrow\)PT (1) có nghiệm kép \(\Leftrightarrow\)Denta =0
\(\Leftrightarrow\left(-4\right)^2-4.1\left(-b\right)=0\Leftrightarrow16+4b=0\)
\(\Leftrightarrow4b=-16\Leftrightarrow b=-4\)
Thay a=4 và b=-4 vào (d1) ta được PT đường thẳng (d1)
\(y=4x-4\)

Lời giải:
PT hoành độ giao điểm:
$2x^2-4x-m=0(*)$
Để $(P)$ cắt $(d)$ tại 2 điểm phân biệt $A,B$ thì PT $(*)$ phải có 2 nghiệm phân biệt $x_A,x_B$
Điều này xảy ra khi $\Delta'=4+2m>0\Leftrightarrow m>-2$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_A+x_B=2\\ x_Ax_B=\frac{-m}{2}\end{matrix}\right.(*)\)
$M$ thuộc trục tung và $(d)$ nên $M$ có tọa độ $(0; m)$
Ta có:
$MA=3MB$
$\Leftrightarrow MA^2=9MB^2$
$\Leftrightarrow (0-x_A)^2+(m-y_A)^2=9[(0-x_B)^2+(m-y_B)^2]$
$\Leftrightarrow x_A^2+(m-4x_A-m)^2=9[x_B^2+(m-4x_B-m)^2]$
$\Leftrightarrow 17x_A^2=9.17x_B^2$
$\Leftrightarrow x_A^2=9x_B^2\Leftrightarrow x_A=\pm 3x_B$
Với $x_A=3x_B$, thay vào $(*)$ thì: \(\left\{\begin{matrix} 4x_B=2\\ 3x_B^2=\frac{-m}{2}\end{matrix}\right.\Rightarrow m=\frac{-3}{2}\)
Với $x_A=-3x_B$, thay vào $(*)$ thì \(\left\{\begin{matrix} -2x_B=2\\ -3x_B^2=\frac{-m}{2}\end{matrix}\right.\Rightarrow m=6\)
Từ đây suy ra $m_{\max}=6$

Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\) (1)
<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0
\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m
=> (1) luôn có 2 nghiệm phân biệt
Vậy (P) luôn cắt (d) tại 2 điểm phân biệt
b) Gọi 2 nghiệm đó là x1; x2
Theo hệ thức Vi ét có:
x1 + x2 = 4m
x1 x2 = - 4 < 0
=> x1; x2 trái dấu .
A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2
+) A; B nằm về hai phía của trục tung do x1; x2 trái dấu .
Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)
Khi đó S OAB = S AHKB - SAHO - SBKO
S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)
SAHO = AH.HO : 2 = (mx1 + 1). (-x1) : 2 = \(\frac{-mx^2_1-x_1}{2}\)
SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)
Vậy SOAB = \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)- \(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)
= \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)
ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)
= (4m)2 - 4.(-4) = 16m2 + 16
=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)
Vậy SOAB = \(4.\sqrt{m^2+1}\)
CÁI ĐỀ NÀY
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P
Chọn C
C