K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)

b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)

22 tháng 7 2017

a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)

20 tháng 11 2022

Bài 2:

Phương trình (d) cần tìm là -3(x-1)+5(y-3)=0

=>-3x+3+5y-15=0

=>-3x+5y-12=0

=>3x-5y+12=0

Bài 3:

vecto chỉ phương là \(\overrightarrow{v}=\left(-3;5\right)\)

=>VTPT là (5;3)

Phương trình đường thẳng là:

5(x-5)+3(y-3)=0

=>5x-25+3y-9=0

=>5x+3y-34=0

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

15 tháng 4 2018

Chọn B.

Phương trình tổng quát là:

2.(x - 3) + 1.(y - 2) = 0

⇒ 2x - 6 + y - 2 = 0

⇔ 2x + y - 8 = 0

13 tháng 3 2019

a. Md1= (2;1)

Md2 = (-1;3)

b. Gọi d là đường thẳng đi qua M

- Viết PTTS của d ⊥ d1:

Ta có:

M(2;1)

Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

--> VTCP ud = (3;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)

- Viết PTTQ của d ⊥ d1:

Ta có:

M(2;1)

Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)

Vậy PTTQ của d:

-1(x - 2) + 3(y - 1) = 0

<=> -x + 2 + 3y - 3 = 0

<=> -x + 3y - 1 = 0

- Viết PTTS của d ⊥ d2:

Ta có:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

--> VTCP ud = (2;1)

Vậy PTTS của d:

\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)

Viết PTTQ của d ⊥ d2:

M(-1;3)

Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)

Vậy PTTQ của d:

-1(x + 1) + 2(y - 3) = 0

<=> -x - 1 + 2y - 6 = 0

<=> -x + 2y - 7 = 0

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0 a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1) c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1) d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC e) Viết...
Đọc tiếp

Trong mặt phẳng Oxy, cho A(-3; 2), B(1; 4), C(0; 5) và đường thẳng (Δ ): -3x+4y-1=0
a) Viết phương trình tham số các cạnh AB, AC , BCcủa tam giác ABC
b) Viết PT tham số đường thẳng d qua A và có véc tơ pháp tuyến \(\overset{\rightarrow}{n}\)( -4;1)
c) Viết PT tổng quát đường thẳng d qua B và có véc tơ chỉ phương \(\overrightarrow{u}\)( -4;1)
d) Viết phương trình tổng quát các cạnh AB, AC của tam giác ABC
e) Viết phương trình đường thẳng d qua A và song song với Δ
f) Viết phương trình đường thẳng d’ qua C và vuông góc với đường thẳng Δ
g) Viết phương trình đường tròn (C) tâm B và đi qua điểm C.
h) Viết phương trình đường tròn (C) đường kính AB.
i) Viết phương trình đường tròn (C) đi qua 3 điểm A, B

k) Cho đường thẳng d:\(\left\{{}\begin{matrix}x=2+2t\\y=3+2t\end{matrix}\right.\) Tìm điểm N∈ d sao cho khoảng cách từ N đến đường thẳng \(\Delta\) bằng 3

l) Cho 3 đường thẳng d\(_1\) :x+y+3=0 . d\(_2\) : x-y-4=0 , d\(_3\):x-2y = 0 Tìm điểm M ∈ d\(_3\) để
d (M; d\(_1\)) = 2d (M; d\(_2\))

0
NV
3 tháng 5 2019

Bài 1:

\(2c=8\Rightarrow c=4\)

Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)

Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)

Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)

Bài 2:

\(2a=10\Rightarrow a=5\)

\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)

Phương trình elip:

\(\frac{x^2}{25}+\frac{y^2}{16}=1\)

NV
3 tháng 5 2019

Câu 3:

\(x-2y+3=0\Rightarrow x=2y-3\)

Thay vào pt đường tròn ta được:

\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)

\(\Leftrightarrow5y^2-20y+15=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)

Tọa độ 2 giao điểm: \(A\left(-1;1\right)\)\(B\left(3;3\right)\)

Câu 4:

Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)

Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\), nên có phương trình tham số là:

 \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 5 + t\end{array} \right.\)

Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)

Ta có phương trình tổng quát là

 \((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)

b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :

\(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 2 + 3t\end{array} \right.\)

Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\)

Phương trình tổng quát của đường thẳng là:

\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)

c) Đường thẳng \(d\) có dạng \(y = ax + b\)

d đi qua \(P(1;1)\) và có hệ số góc \(k =  - 2\) nên ta có:

\(1 =  - 2.1 + b \Rightarrow b = 3\)

Suy ra đồ thị đường thẳng có dạng \(y =  - 2x + 3\)

Vậy đường thẳng có phương trình tổng quát là \(y + 2x - 3 = 0\)

Suy ra đường thẳng  có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của là :

\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)

 d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {QR}  = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n  = (2;3)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) =  \Leftrightarrow 2x + 3y - 6 = 0\)