K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Đường cao của tam giác là đoạn vuông góc kẻ từ một đỉnh đến cạnh đối diện. Cạnh đối diện này được gọi là đáy ứng với đường cao. Độ dài của đường cao làkhoảng cách giữa đỉnh và đáy. Trong một tam giác cân (có hai cạnh bằng nhau), trung điểm của cạnh đáy là chân đường cao hạ từ đỉnh.

17 tháng 2 2017

trong tam giác vuông có 2 đường cao chính là 2 cạnh góc vuông, còn 1 đường cao nữa từ đỉnh(góc vuông) hạ xuống vuông góc với cạnh huyền. mik nghĩ sao nói vậy, đúng thì tk nha

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0
16 tháng 8 2016

a/ Ta có: AB2 + AC2 = BC2 = 25

=> tam giác ABC vuông tại A

b/ \(AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8cm\)

\(BC=BH+CH\Rightarrow CH=BC-BH=5-1,8=3,2cm\)

Trong tam giác vuông AHB có: 

\(AH.HB=HD.AB\Rightarrow HD=\frac{AH.HB}{AB}=\frac{2,4.1,8}{3}=\frac{36}{25}=1,44cm\)

Trong tam giác vuông AHC có:

\(AH.HC=HE.AC\Rightarrow HE=\frac{AH.HC}{AC}=\frac{2,4.3,2}{4}=\frac{48}{25}=1,92cm\)

21 tháng 3 2022

tra mang đi:)

a) Xét ∆ABD có : 

AH là trung trực đồng thời là trung tuyến 

=> ∆ABD cân tại A 

Mà B = 60° 

=> ∆ABD đều 

b ) Ta có : CAD = BAC - BAD 

= 90° - 60° = 30° 

=> EAD = 30° 

Ta có : ADH = 60° (∆ABD đều)

Ta có : HAD = AHD - ADH =90° - 60° = 30° 

Ta có AH vuông góc với BC 

ED vuông góc với BC 

=> AH//ED 

=> HAD = ADE = 30° ( so le trong)

=> ∆AED cân tại E

15 tháng 7 2019

A B C H D E F

a, xét tam giác AHB và tam giác AHD có : AH chung

góc AHB = góc AHD = 90 do AH là đường cao (gt)

HB = HD (gt)

=> tam giác AHB = tam giác AHD (2cgv)

=> AB = AD (đn)

=> tam giác ABD cân tại A (gt)

mà góc ABC = 60 (gt)

=> tam giác ABD đều (tc)

b,  tam giác AHB = tam giác AHD (câu a)

=> góc HAB = góc HAD (đn)         (1)

xét tam giác AHB vuông tại H => góc HAB = góc HBA = 90 (tc)

mà góc HBA = 60 (gt)

=> góc HAB = 90 - 60 = 30  và (1)

=> góc HAB  = góc HAD = 30         (2)

có tam giác ABD đều (câu a) => góc BAD = 60 (đn)

góc BAD + góc DAC  = góc BAC 

mà góc BAC = 90 (gT)

=> góc DAC = 90 - 60 = 30 (gt)   và (2)

=> góc DAC = góc DAH = 30      (3)

có AH _|_ BC do AH là đường cao (Gt) và ED _|_ BC (gt)

=> AH // ED (tc) 

=> góc EDA = góc DAH  (so le trong)    và (3)

=> góc DAC = góc EDA 

=> tam giác AED cân tại E (tc)

c, tam giác ABD đều (Câu a)

=> góc ABD = góc BAD (đn)

tam giác ABC vuông tại A (gt) => góc ACB + góc ABC = 90 => góc ACB = 90 - ABC 

góc CAD + góc BAD = 90 => góc CAD = 90 - góc BAD 

=> góc CAD = góc ACB 

=> tam giác CAD cân tại D (đn)

=> DA = DC (đn)

xét tam giác CDF và tam giác ADH có : góc CDF = góc ADH (đối đỉnh)

góc CFD = góc AHD = 90 

=> tam giác CDF = tam giác ADH (ch - gn)

=> FC = HA (đn) 

     DF = DH (đn)

=> tam giác DFH cân tại D (đn)

=> góc DFH = (180 - góc FDH) : 2 (tc)      (4)

có góc FDH  + góc HDA = 180 (kb)

mà góc HDA = 60 do tam giác ABD đều )

=> góc FDH = 180 - 60 = 120    và (4)

=> góc DFH = (180 - 120) : 2 = 30 

góc DAH = 30 (câu  b)

=> góc DFH = góc DAH = 30

=> tam giác FHA cân tại H (tc) 

=> HF = HA (đn) mà HA = CF (Cmt)

=> HF = HA = CF

28 tháng 4 2016

a) xét tam giac ABH và tam giac ADH ta có

AH=AH (canh chung)

BH=HD(gt)

goc AHB= góc AHD (=90)

-> tam giac ABH= tam giac ADH (c-g-c)

-> AB=AD (2 cạnh tương ứng)

-> tam giac ADB cân tại A

b)Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( định lý pitago)

152=122+ BH2

BH2=152-122

BH2=81

BH=9

Xét tam giác AHC vuông tại H ta có

AC2=AH2+HC2 ( định lý pitago)

AC2=122+162

AC2=400

AC=20

c) ta có BC= BH+HC=9+16=25

Xét tam giác ABC ta có

BC2=252=625

AB2+AC2=152+202=625

-> BC2=AB2+AC2 (=625)

-> tam giac ABC vuông tại A (định lý pitago đảo)

d)xét tam giác ABH và tam giác EDH ta có

BH=HD (gt)

AH=HE(gt)

góc BHA= góc DHE (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc BAH= góc DEH (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong 

nên AB// ED

lại có AB vuông góc AC ( tam giác ABC vuông tại A)

-> ED vuông góc AC

28 tháng 4 2016

mày ngu như chó