Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
ta có: góc BAD + góc DAC = 90 độ
góc ADH + góc HAD = 90 độ ( vì tam giác AHD vuông tại H )
mà DAC = HAD ( AD là tia phân giác)
suy ra góc BAD = góc BDA
vậy tam giác ABD là tam giác cân tại B
ta có : góc CAE + góc EAB = 90 độ
góc CEA + góc HAE = 90 độ (tam giác AEH vuông tại H)
mà EAB=HAE suy ra góc CAE = góc CEA
vậy tam giác ACE cân tại C
- Ta có : AB=BD ( tam giác ABD cân)
AC=CE( tam giác AEC cân )
suy ra AB+AC=BD+CE
=BE+ED+CD+ED
=BC+DE