K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng BH : 2,5cm

- Dựng ∠ (xHB) = 90 0

- Dựng cung tròn tâm B bán kính 3cm cắt Hx tại C.

- Dựng BC

- Dựng đường trung trực BC cắt CH tại A

- Dựng AB, ta có ∆ ABC cẩn dựng

Chứng minh:

Ta có AC = AB (tính chất đường trung trực)

Nên  ∆ ABC cân tại A, BH ⊥ AC

Ta lại có BC = 3cm, BH = 2,5cm

Vậy  ∆ ABC dựng được thỏa mãn điều kiện bài toán.

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H co

BC chung

góc KBC=góc HCB

=>ΔKBC đồng dạng với ΔHCB và ΔKCB=ΔHBC

b: AK+KB=AB

AH+HC=AC

mà HC=KB; AB=AC

nên AK=AH

mà AB=AC

nên KH//BC

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

16 tháng 11 2016

SABC = \(\frac{4\times6}{2}\) = 12 (cm2)

BH là đường cao của tam giác BAC cân tại B.

=> BH là đường trung tuyến của tam giác ABC.

=> H là trung điểm của AC.

=> AH = HC = AC/2 = 6/2 = 3 (cm)

Tam giác HBC vuông tại H có:

BC2 = HB2 + HC2 (định lý Pytago)

= 42 + 32

= 16 + 9

= 25

BC = \(\sqrt{25}\) = 5 (cm)

Tam giác HBC vuông tại H có HI là đường trung tuyến (I là trung điểm của BC)

=> HI = BC/2 = 5/2 = 2,5 (cm)

I là trung điểm của BC (gt)

I là trung điểm của HD (H đối xứng D qua I)

=> BHCD là hình bình hành.

mà BHC = 900

=> BHCD là hình chữ nhật.

=> BHCD là hình vuông

<=> BH = HC

<=> Tam giác BAC có đường trung tuyến BH bằng 1 nửa cạnh AC.

<=> Tam giác ABC vuông tại B.

mà tam giác BAC cân tại B.

=> Tam giác BAC vuông cân tại B.

Vậy BHCD là hình vuông khi tam giác BAC vuông cân tại B.

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

góc KBC=goc HCB

=>ΔKBC=ΔHCB

=>BK=HC

=>AK=AH

b: Xét ΔABC có AK/AB=AH/AC

nên KH//BC