Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách dựng:
- Dựng BH : 2,5cm
- Dựng ∠ (xHB) = 90 0
- Dựng cung tròn tâm B bán kính 3cm cắt Hx tại C.
- Dựng BC
- Dựng đường trung trực BC cắt CH tại A
- Dựng AB, ta có ∆ ABC cẩn dựng
Chứng minh:
Ta có AC = AB (tính chất đường trung trực)
Nên ∆ ABC cân tại A, BH ⊥ AC
Ta lại có BC = 3cm, BH = 2,5cm
Vậy ∆ ABC dựng được thỏa mãn điều kiện bài toán.
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H co
BC chung
góc KBC=góc HCB
=>ΔKBC đồng dạng với ΔHCB và ΔKCB=ΔHBC
b: AK+KB=AB
AH+HC=AC
mà HC=KB; AB=AC
nên AK=AH
mà AB=AC
nên KH//BC
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Bài 2:
Ta có: BC=HB+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8cm
SABC = \(\frac{4\times6}{2}\) = 12 (cm2)
BH là đường cao của tam giác BAC cân tại B.
=> BH là đường trung tuyến của tam giác ABC.
=> H là trung điểm của AC.
=> AH = HC = AC/2 = 6/2 = 3 (cm)
Tam giác HBC vuông tại H có:
BC2 = HB2 + HC2 (định lý Pytago)
= 42 + 32
= 16 + 9
= 25
BC = \(\sqrt{25}\) = 5 (cm)
Tam giác HBC vuông tại H có HI là đường trung tuyến (I là trung điểm của BC)
=> HI = BC/2 = 5/2 = 2,5 (cm)
I là trung điểm của BC (gt)
I là trung điểm của HD (H đối xứng D qua I)
=> BHCD là hình bình hành.
mà BHC = 900
=> BHCD là hình chữ nhật.
=> BHCD là hình vuông
<=> BH = HC
<=> Tam giác BAC có đường trung tuyến BH bằng 1 nửa cạnh AC.
<=> Tam giác ABC vuông tại B.
mà tam giác BAC cân tại B.
=> Tam giác BAC vuông cân tại B.
Vậy BHCD là hình vuông khi tam giác BAC vuông cân tại B.
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
b: Ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
\(BH=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=goc HCB
=>ΔKBC=ΔHCB
=>BK=HC
=>AK=AH
b: Xét ΔABC có AK/AB=AH/AC
nên KH//BC