\(\beta\), BC=a , AC=b

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Cách dựng 

Bước 1 : Dựng \(\widehat{xBy}=\beta\) trên tia Bx đặt đoạn BC=a .

B2 : Dựng đường tròn ( C ; b ) cắt Bx tại A .

B3 : Nối AC ta có ABC là tam giác cần dựng 

Cần điều kiện :

\(0^o< \beta< 180^o\)và đường tròn ( C ; b ) có điểm chung với tia Bx.

26 tháng 7 2018

b a B x y A C

19 tháng 6 2019

A B C K H I D U V E F

Gọi giao điểm của Ax với cạnh BC là V, trung trực của BC cắt AC,BC lần lượt tại H,F

Phân giác ^BAK cắt BH tại U. Trung trực của BH cắt BH và AU lần lượt tại E và I

Từ giả thiết ta có ^ABC = 2.^ACB. Do H thuộc trung trực của BC nên ^HBC = ^HCB = ^ACB

=> ^ABC = 2.^HBC hay ^ABH = ^ACB. Từ đó \(\Delta\)AHB ~ \(\Delta\)ABC (g.g)

Dễ thấy ^BAU = ^CAV = ^BAC/3, ^ABU = ^ACV => \(\Delta\)AUB ~ \(\Delta\)AVC (g.g)

Do đó \(\frac{BU}{CV}=\frac{AB}{AC}=\frac{BH}{CB}=\frac{BE}{CF}=\frac{BU-BE}{CV-CF}=\frac{EU}{FV}\)

Cũng dễ có \(\Delta\)IEU ~ \(\Delta\)KFV (g.g) => \(\frac{EU}{FV}=\frac{IU}{KV}\). Suy ra \(\frac{BU}{CV}=\frac{IU}{KV}\)

Kết hợp với ^IUB = ^KVC (^AUB = ^AVC) dẫn tới \(\Delta\)BIU ~ \(\Delta\)CKV (c.g.c)

=> ^IBU = ^KCV hay ^IBH = ^KCB. Mà hai tam giác BIH và BKC cân tại I và K nên \(\Delta\)BIH ~ \(\Delta\)BKC

Từ đây \(\Delta\)BIK ~ \(\Delta\)BHC (c.g.c). Có \(\Delta\)BHC cân tại H => \(\Delta\)BIK cân tại I

Nếu ta lấy một điểm D sao cho ^BID = ^IKA, ^IBD = ^KIA thì \(\Delta\)IBD = \(\Delta\)KIA (g.c.g)

=> ^BDI = ^IAK = ^IAB => Từ giác AIBD nội tiếp. Đồng thời có AI = BD nên AIBD là hình thang cân

=> AB = DI. Mà DI = AK (vì \(\Delta\)IBD = \(\Delta\)KIA) nên AB = AK => \(\Delta\)BAK cân tại A

=> ^AKB = (1800 - ^BAK)/2 = \(\frac{180^0-2\alpha}{2}=90^0-\alpha=90^0-\frac{180^0-3\beta}{3}=30^0+\beta\)

Vậy \(\widehat{AKB}=90^0-\alpha=30^0+\beta\).

21 tháng 4 2017

Bài giải:

Sử dụng phương pháp dựng tam giác vuông đã được học.

Ta lần lượt thực hiên:

- Vẽ đoạn BC = 4cm.

- Vẽ tia Bx tạo với BC một góc 650

- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.

Khi đó ∆ABC là tam giác cần dựng.


29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

28 tháng 4 2017

A B C D

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

14 tháng 2 2017

a, bạn xét hai cặp tam giác đồng dạng AHC và BAC rồi suy ra tỉ lệ thức. Tương tự với tam giác AHB và CAB

b, có SABC = 1/2 x AH x BC = 1/2 x AC x AB

               <=> AH x BC = AC x AB

                 => AH=(AC x AB) : BC

   Bạn thay vào rồi tính. Mik chỉ hưỡng dẫn thôi.

    CHÚC BẠN THÀNH CÔNG 

17 tháng 3 2016

Vi goc A=A' ;B+B'=180 do

nên => hai tam giác này đồng dạng

=>AC/A'C'=BC/B'C' (dpcm)

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm

4 tháng 5 2019

45 H B C D                                                                a,  CM: \(\Delta AHB\)đồng dạng voi\(\Delta CAB\)

- Vì \(AH\perp BC\Rightarrow\widehat{AHB=90^o}\)

- Xét \(\Delta AHB\)và \(\Delta CAB\)có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta AHB\)đồng dạng voi \(\Delta CAB\)(g-g) (đpcm)

b, CM: \(AC^2=CH.BC\)

- Xét \(\Delta AHC\)và \(\Delta BAC\)có:

\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{C}\)chung

\(\Rightarrow\Delta AHC\)đòng dạng với\(\Delta BAC\)(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{AC}\)

\(\Leftrightarrow AC^2=CH.BC\left(đpcm\right)\)