Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

a)
\(25x^2-9(x+y)^2=(5x)^2-(3x+3y)^2\)
\(=(5x-3x-3y)(5x+3x+3y)=(2x-3y)(8x+3y)\)
b)
\(x^2-x-2=x^2+x-2x-2=x(x+1)-2(x+1)=(x-2)(x+1)\)
c)
\(3x^2-11x+6=3x^2-9x-2x+6\)
\(=3x(x-3)-2(x-3)=(x-3)(3x-2)\)
d)
\(x^2+5x+8\): biểu thức không phân tích được thành nhân tử
e)
\(x^2+8x+7=x^2+x+7x+7\)
\(=x(x+1)+7(x+1)=(x+1)(x+7)\)
g)
\(x^2-6x-16=x^2-6x+9-25\)
\(=(x-3)^2-5^2=(x-3-5)(x-2+5)=(x-8)(x+2)\)
h)
\(4x^2-8x+3=4(x^2-2x+1)-1\)
\(=4(x-1)^2-1=(2x-2)^2-1^2=(2x-2-1)(2x-2+1)\)
\(=(2x-3)(2x-1)\)
i)
\(3x^2-11x+6=3x^2-9x-2x+6\)
\(=3x(x-3)-2(x-3)=(3x-2)(x-3)\)

Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3

a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)
\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=\frac{-3}{36}\)
Vậy: \(x=\frac{-3}{36}\)
b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)
nên 300-x=0
\(\Leftrightarrow x=300\)
Vậy: x=300
c) Ta có: \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)
Từ (1) và (2) suy ra x+1=0
hay x=-1
Vậy: x=-1
d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x-1=t\)
\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)
\(\Leftrightarrow t^2-1-24=0\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)
\(\Leftrightarrow5x-3-4x+7=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy: x=-4
f) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)
g) Ta có: \(x^2+6x-16=0\)
\(\Leftrightarrow x^2-2x+8x-16=0\)
\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-8\right\}\)
h) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;2\right\}\)
i) Ta có: \(x^2+x-2=0\)
\(\Leftrightarrow x^2-x+2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-2\right\}\)
k) Ta có: \(3x^2+7x+2=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)
l) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-2x-10x+5=0\)
\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
1. \(x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
2. \(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
3. \(x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
4. \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
5. \(x^2-4x+4=\left(x-2\right)^2\)
6. \(x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
7. \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
8. \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
9. \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
10. \(x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
11. \(x^2-8x+16=\left(x-4\right)^2\)
12. \(x^2+8x+15=\left(x+3\right)\left(x+5\right)\)
13. \(x^2-8x+7=\left(x-1\right)\left(x-7\right)\)
14. \(x^2+9x+8=\left(x+1\right)\left(x+8\right)\)
15. \(x^2-9x+14=\left(x-2\right)\left(x-7\right)\)
16. \(x^2+9x+18=\left(x+3\right)\left(x+6\right)\)
17. \(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(18.2x^2-3x+1=2x^2-x-2x+1\)
\(=x\cdot\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(x-1\right)\)
ghi rõ từng bước 10 câu đầu đc k bạn