\(\sqrt{10+2\sqrt{5}}\)  thành hằng đẳng thức

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

10+2 căn 5

= 10+2 căn 10 . căn 2 trên 2+2 trên 4

= (căn 10+ căn 2 trên 2) 2

mik ko biết viết căn nhé, bạn tự dịch, còn kqua sai thì thôi nhé

20 tháng 8 2019

a, 4-2\(\sqrt{3}\)

=3-\(2\sqrt{1}.\sqrt{3}\)+1

=(\(\sqrt{3}\))2-\(2\sqrt{3}.\sqrt{1}+\left(\sqrt{1}\right)^2\)

=\(\left(\sqrt{3}-\sqrt{1}\right)^2\)

b,3+\(2\sqrt{2}\)

=\(2+2\sqrt{2}.\sqrt{1}+1\)

=\(\left(\sqrt{2}\right)^2+2.\sqrt{1}.\sqrt{2}+\left(\sqrt{1}\right)^2\)

=\(\left(\sqrt{2}+\sqrt{1}\right)^2\)

c, 11-2\(\sqrt{30}\)

=6-\(2\sqrt{5}.\sqrt{6}+5\)

=\(\left(\sqrt{6}\right)^2-2\sqrt{5}.\sqrt{6}+\left(\sqrt{5}\right)^2\)

=\(\left(\sqrt{6}-\sqrt{5}\right)^2\)

20 tháng 8 2019

a/ \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

b/ \(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)

c/ \(11-2\sqrt{30}=6-2\sqrt{30}+5=\left(\sqrt{6}-\sqrt{5}\right)^2\)

NV
30 tháng 6 2019

\(\sqrt{25-2.5.\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

\(\sqrt{121+2.11.\sqrt{2}+2}=\sqrt{\left(11+\sqrt{2}\right)^2}=11+\sqrt{2}\)

\(\sqrt{\frac{9}{2}-2.\frac{3}{\sqrt{2}}.\frac{\sqrt{5}}{\sqrt{2}}+\frac{5}{2}}=\sqrt{\left(\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^2}=\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}=\frac{3\sqrt{2}-\sqrt{10}}{2}\)

NV
5 tháng 6 2019

\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)

\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)

\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)

\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)

\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

29 tháng 8 2019

giải ra chưa chỉ mình với

5 tháng 9 2015

Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)

18 tháng 8 2019

a, \(19-8\sqrt{3}=16-2.4.\sqrt{3}+3=\left(4-\sqrt{3}\right)^2\)

c, \(17+3\sqrt{32}=17+12\sqrt{2}=3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2=\left(3+2\sqrt{2}\right)^2\)

d, \(28-10\sqrt{3}=25-2.5.\sqrt{3}+3=\left(5-\sqrt{3}\right)^2\)

P/s: bí câu b ghê :<  

16 tháng 6 2018

a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)

\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)

\(=4\sqrt{10}+4\sqrt{2}\)

c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)

\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)

\(=5\sqrt{7}\)

16 tháng 6 2018

d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)

\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)

\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)

\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)

\(=\dfrac{1+12\sqrt{2}}{4}\)

e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)

\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)

f) bạn xem đề lại nhé

31 tháng 7 2018

\(\left(\sqrt{A}+\sqrt{B}\right)^2\)\(=A+B+2\sqrt{AB}\)

\(\left(\sqrt{A}-\sqrt{B}\right)^2\)\(=A-B+2\sqrt{AB}\)