Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)
b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)
\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)
\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)
a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)
b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)
b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)
ĐKXĐ: \(x\ne7\)
\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)
\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)
\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)
\(\Leftrightarrow9y^2-126y+441=0\)
\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left(y-7\right)^2=0\)
\(\Leftrightarrow y-7=0\)
\(\Leftrightarrow y=7\left(Loại\right)\)
Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.
a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
ĐKXĐ: \(y\ne2;y\ne4\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)
\(\Leftrightarrow10-6y=-2\)
\(\Leftrightarrow-6y=-12\)
\(\Leftrightarrow y=2\left(Loại\right)\)
Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\) và \(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.
Bài 3 Tính nhanh
A, 892^2+892.216+108^2 B, 36^2+26^2-52.36
=892^2+2.892.108+108^2 =36^2-52.62+26^2
=(892+108)^2
=1000^2
=1000000
Bài 4 Phân tích đa thức sau thành nhân tử
X^3-2x^2+x
5(x-y)-y(x-y)
36-12x+x^2
4x^2+12x-9
Bài 3:
\(892^2+892.216+108^2=892^2+2.892.108+108^2=\left(892+108\right)^2=1000000\)
\(36^2+26^2-52.36=36^2-2.26.36+26^2=\left(36-26\right)^2=100\)
Bài 4:
\(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)
\(5.\left(x-y\right)-y.\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)
\(36-12x+x^2=x^2-12x+36=x^2-2x.6+6^2=\left(x-6\right)^2\)
\(4x^2+12x-9=\left(2x\right)^2+2.2x.3+3^2=\left(2x+3\right)^2\)
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
2)
\(y+y^2-y^3-y^4=0\)
\(\Leftrightarrow y\left(y+1\right)-y^3\left(y+1\right)=0\)
\(\Leftrightarrow\left(y-y^3\right)\left(y+1\right)=0\)
\(\Leftrightarrow y\left(1-y^2\right)\left(y+1\right)=0\)
\(\Leftrightarrow y\left(1-y\right)\left(y+1\right)^2=0\)
\(\Leftrightarrow y\in\left\{0;-1;1\right\}\)
3)
\(A=n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên \(\hept{\begin{cases}n-1\\n+1\\n+3\end{cases}}\)chẵn
\(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮2^3=8\left(đpcm\right)\)
b) \(a^2+2ab+2cd+b^2-c^2-d^2\)
\(=\left(a^2+2ab+b^2\right)-\left(c^2-2cd+d^2\right)\)
\(=\left(a+b\right)^2-\left(c-d\right)^2\)
\(=\left(a+b+c-d\right)\left(a+b-c+d\right)\)
a) Ta có M = y 2 − 8 y + 15 4 y : y 2 − 7 y + 12 2 y = y − 5 2 ( y − 4 )
b) Ta có N = 27 b 3 − 1 9 b 2 : 9 b 2 + 3 b + 1 9 b 2 = 3 b − 1