Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
1) \(5-2\sqrt{6}=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
2) \(8+2\sqrt{15}=\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}+\sqrt{3}\right)^2\)
3) \(10-2\sqrt{21}=\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{7}-\sqrt{3}\right)^2\)
4) \(21+6\sqrt{6}=\left(\sqrt{18}\right)^2+2.\sqrt{18}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}+\sqrt{3}\right)^2\)
5) \(14+8\sqrt{3}=\left(\sqrt{8}\right)^2+2.\sqrt{8}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2\)
6) \(36-12\sqrt{5}=\left(\sqrt{30}\right)^2-2.\sqrt{30}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{30}-\sqrt{6}\right)^2\)
7) \(25+4\sqrt{6}=\left(\sqrt{24}\right)^2+2\sqrt{24}.1+1^2=\left(\sqrt{24}+1\right)^2\)
8) \(98-16\sqrt{3}=\left(\sqrt{96}\right)^2-2\sqrt{96}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{96}-\sqrt{2}\right)^2\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)
\(=-2+\sqrt{6}-3+2\sqrt{6}\)
\(=-5+3\sqrt{6}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)
\(=3-\sqrt{7}-2+2\sqrt{7}\)
\(=1+\sqrt{7}\)