Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mạch thuần C nên i sớm pha hơn u góc \(\frac{\pi}{2}\)
\(\varphi_u-\varphi_i=-\frac{\pi}{2}\Rightarrow\frac{\pi}{4}-\varphi=-\frac{\pi}{2}\Rightarrow\varphi=\frac{3\pi}{4}\)
Công suất tiêu thụ của biến trở:
$P_R=\frac{U^2R}{(R+r)^2+(Z_L-Z_C)^2}=\frac{U^2}{R+\frac{r^2+(Z_L-Z_C)^2}{R}+2r}\leq \frac{U^2}{2\sqrt{r^2+(Z_L-Z_C)^2}+2r}$
Do đó, $P_R$ đạt giá trị lớn nhất khi $R=\sqrt{(Z_L-Z_c)^2+r^2}\Leftrightarrow Z_{AB}^2=75^2+(75+r)^2-r^2$
Giờ chỉ cần thử các giá trị nguyên ta thu được $r=21\Omega$ và $Z_{AB}=120\Omega$, tức đáp án $B$ là đáp án đúng.
Cường độ dòng hiệu dụng: \(I=\dfrac{U}{Z}\)
Ta có: \(I_1=I_2\)
\(\Rightarrow \dfrac{U}{Z_1}=\dfrac{U}{Z_2}\)
\(\Rightarrow Z_1=Z_2\)
\(\Rightarrow \sqrt{R^2+(Z_{L1}-Z_{C1})^2}=\Rightarrow \sqrt{R^2+(Z_{L2}-Z_{C2})^2}\)
\(\Rightarrow Z_{L1}-Z_{C1}=Z_{C2}-Z_{L2}\)
\(\Rightarrow Z_{L1}+Z_{L2}=Z_{C1}+Z_{C2}\)
\(\Rightarrow \omega_1.L+\omega_2.L=\dfrac{1}{\omega_1C}+\dfrac{1}{\omega_2C}\)
\(\Rightarrow (\omega_1+\omega_2)L=\dfrac{1}{C}.\dfrac{\omega_1+\omega_2}{\omega_1.\omega_2}\)
\(\Rightarrow \omega_1.\omega_2=\dfrac{1}{LC}\)
Chọn C
Cường độ cực đại: \(I_0=\dfrac{U_{0R}}{R}=2,5\sqrt 2 (A)\)
\(\varphi _i=\varphi_{uR}=0\)
\(Z_L=\omega L = 60\Omega\)
\(Z_C=\dfrac{1}{\omega C}=100\Omega\)
Tổng trở \(Z=\sqrt{40^4+(60-100)^2}=40\sqrt2\Omega\)
Điện áp cực đại hai đầu mạch: \(U_0=I_0.Z=200V\)
Độ lệch pha của u với i: \(\tan\varphi = \dfrac{Z_L-Z_C}{R}=-1\Rightarrow\varphi=-\dfrac{\pi}{4}\)
\(\Rightarrow \varphi_u=-\dfrac{\pi}{4}\)
Vậy biểu thức của hiệu điện thế: \(u=200\cos(100\pi t-\dfrac{\pi}{4})V\)
Hạ bậc \(i=4\cos^2\left(\omega t\right)\)
\(\Rightarrow i=4\cos^2\omega t=2+2\cos\left(2\omega t\right)\)
Gọi R là điện trở thuần của mạch; P là công suất tiêu thụ của mạch.
\(P=P_1+P_2\)
\(P_1=R.2^2=4R\)
\(P_2=R.\left(\sqrt{2}\right)^2=2R\)
Vậy \(P=4R+2R=6R=I^2R\) nên ta có \(I=\sqrt{6}\) A
Chọn B