Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thay x, y, z vào đơn thức là được mà! Mấy đơn thức này còn thu gọn rồi! Bạn tự làm đi
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
B1
a) 3x2y3.(-6x3y )
\(=\left(3.-6\right)\left(x^2.x^3\right)\left(y^3y\right)\)
\(=-18x^5y^{\text{4 }}\)
B2
a), b)
\(A=\left(\frac{-3}{7}x^2y^2z\right).\left(\frac{-42}{9}xy^2z^2\right)\)
\(A=\left(\frac{-3}{7}.\frac{-42}{9}\right)\left(x^2.x\right)\left(y^2.y^2\right)\left(z.z^2\right)\)
\(A=2x^3y^4z^3\) - Bậc 10
Hệ số : 2
c) Thay x = 2 , y = 1 , z = -1 vào biểu thức A , ta có :
\(A=2.2^3.1^4.\left(-1\right)^3\)
\(A=2.8.1.\left(-1\right)\)
A = -16
Vậy , tại x = 2 , y = 1 , z = -1 thì A = -16
a: \(=-a^5\cdot b^2\cdot xy^2z^{n-1}\cdot b^3c\cdot x^4z^{7-n}=-a^5b^5c\cdot x^5y^2z^6\)
Hệ số là \(-a^5b^5c\)
Bậc là 13
b: \(=\dfrac{9}{10}a^3x^2y\cdot\dfrac{5}{3}ax^5y^2z=\dfrac{3}{2}a^4x^7y^3z\)
Hệ số là \(\dfrac{3}{2}a^4\)
Bậc là 11
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)
\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)
\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)
\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)
\(\Rightarrow P=123.\dfrac{1}{45}-3\)
\(\Rightarrow P=-\dfrac{4}{15}\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Chọn B