Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì để 1 đơn thức chia hết cho 1 đơn thức khác thì số mũ của mỗi biến trong đơn thức bị chia này phải lớn hơn hoặc bằng số mũ của mỗi biến tương ứng trong đơn thức chia
Bài 50:
\((5x+3y)^2=25x^2+30xy+9y^2\)
Bài 51:
\((\frac{1}{3}xy^m+4x^2y)^2=\frac{1}{9}x^2y^{2m}+2.\frac{1}{3}xy^m.4x^2y+16x^4y^2\)
\(=\frac{1}{9}x^2y^{2m}+\frac{}{3}x^3y^{m+1}+16x^4y^2\)
Bài 54:
\(25x^2y^4+30xy^2z+9z^2=(5xy^2)^2+2.(5xy^2).(3z)+(3z)^2\)
\(=(5xy^2+3z)^2\)
Bài 55:
\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=(\frac{4}{3}x)^2+2.(\frac{4}{3}x).(\frac{3}{2}yz^2)+(\frac{3}{2}yz^2)^2\)
\(=(\frac{4}{3}x+\frac{3}{2}yz^2)^2\)
Bạn chỉ cần nhớ rõ hằng đẳng thức đáng nhớ số 1 là được.
Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi
\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)
Thay n = 2 vào \(n+2\le2n\), ta có :
\(2+2\le2\times2\)(t/mãn)
Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B
Gớm nhỉ: bái phục