\(\dfrac{1}{2} x^{2n} y^3\) chia hết cho đơn thức B =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 2 2019

\(A\) chia hết cho B khi \(\left\{{}\begin{matrix}2n\ge n+2\\3\ge n+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n\ge2\\n\le2\end{matrix}\right.\) \(\Rightarrow n=2\)

26 tháng 12 2016

Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi 

\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)

Thay n = 2 vào \(n+2\le2n\), ta có : 

\(2+2\le2\times2\)(t/mãn) 

Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B 

17 tháng 1 2017

Gớm nhỉ: bái phục

29 tháng 7 2017

\(\dfrac{A}{B}=\dfrac{x^{2n}y^3}{2.\left(-3\right)x^{n+2}y^{n+1}}=\dfrac{-1}{6}x^{2n-n-2}y^{3-n-1}=\dfrac{-1}{6}x^{n-2}y^{2-n}\Rightarrow\left\{{}\begin{matrix}n-2\ge0\\2-n\ge0\end{matrix}\right.\Rightarrow n=2}\)

15 tháng 12 2016

=2. vừa thi xog nha

 

25 tháng 12 2016

2

31 tháng 5 2019

c) Cho \(P(x)=100x^{100}+99x^{99}+98x^{98}+...+2x^2+x\).Tính P(-1)