\(\left(1-cosx\right)\left(1+cosx\right)-sin^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

= 1 + cosx -cos2x - cosx-sin2x

= 1 - cos2x - sin2x

= 1 - ( cos2x + sin2x )

= 1 - 1 = 0

15 tháng 12 2018

=(1-\(cos^2x\))-\(sin^2x\)=\(1-cos^2x-sin^2x\)
=1\(-\left(cos^2x+sin^2x\right)\)
=1-1=0

30 tháng 6 2017

a/\(cot^2x.tan^2x+2sinx.cosx=1+2sinx.cosx=sin^2x+cos^2x+2sinx.cosx=\left(sinx+cosx\right)^2\)

b/ \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-2sin^2x.cos^2x\)

NV
8 tháng 5 2020

\(\frac{cos^2x\left(1+cot^2x\right)}{sin^2x\left(1+tan^2x\right)}=\frac{tan^2x\left(1+cot^2x\right)}{1+tan^2x}=\frac{tan^2x+tan^2x.cot^2x}{1+tan^2x}=\frac{1+tan^2x}{1+tan^2x}=1\)

Câu b ko rút gọn được, bạn coi lại đề

\(x^2sin^2a+y^2cos^2a-2xy.sina.cosa+x^2cos^2a+y^2sin^2a+2xy.sinx.cosa\)

\(=x^2\left(sin^2a+cos^2a\right)+y^2\left(cos^2a+sin^2a\right)=x^2+y^2\)

4 tháng 8 2017

a, \(32^{\dfrac{x+5}{x-7}}=0,25\cdot128^{\dfrac{x-7}{x+3}}\)

\(\Leftrightarrow2^{5\cdot\dfrac{x+5}{x-7}}=2^{-2}\cdot2^{7\cdot\left(\dfrac{x-7}{x+2}\right)}\)

\(\Leftrightarrow\dfrac{5x+25}{x-7}=-2+7\cdot\left(\dfrac{x-7}{x+3}\right)\)

\(\Leftrightarrow\dfrac{5x25}{x-7}=-2\cdot\dfrac{7x-49}{x+3}\)

\(\Leftrightarrow\dfrac{5x+25}{x-7}=\dfrac{-2x-6+7x-49}{x+3}\)

\(\Leftrightarrow\dfrac{5x+25}{x-7}=\dfrac{5x-55}{x-3}\)

\(\Rightarrow5x^2+15x+25x+75=5x^2-35x-55x+385\)

\(\Leftrightarrow130x+310=0\)

\(\Leftrightarrow x=\dfrac{31}{13}\)

11 tháng 8 2015

\(pt\Leftrightarrow\cos\frac{x}{4}\sin x+\cos x+\sin\frac{x}{4}\cos x=3\left(\sin^2x+\cos^2x\right)=3\)

Mà \(\sin\alpha;\text{ }\cos\alpha\le1\forall\alpha\)

\(\Rightarrow\cos\frac{x}{4}.\sin x\le1.1;\text{ }\sin\frac{x}{4}.\cos x\le1.1;\text{ }\cos x\le1\forall x\)

\(\Rightarrow\cos\frac{x}{4}.\sin x+\sin\frac{x}{4}.\cos x+\cos x\le3\text{ }\forall x\)

Dấu "=" xảy ra khi \(\cos x=1;\text{ }\cos\frac{x}{4}.\sin x=1;\text{ }\cos x.\sin\frac{x}{4}=1\)

\(\Leftrightarrow\cos x=1;\text{ }\sin\frac{x}{4}=1;\text{ }\cos\frac{x}{4}.\sin x=1\)

Pt trên vô nghiệm do \(\cos x=1\text{ thì }\sin x=0\Rightarrow\cos\frac{x}{4}.\sin x=0\)

Vậy phương trình đã cho vô nghiệm.

17 tháng 7 2017

ĐKXĐ: (1-x)(2x-1)>=0

\(\Rightarrow\hept{\begin{cases}1-x>=0\\2\text{x}-1>=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{1}{2}\end{cases}}\)

vậy 1/2<=x<=1

bé hơn hoặc bằng nha

17 tháng 7 2017

cảm ơn nha

28 tháng 9 2018

a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)

28 tháng 9 2018

a)

\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) mình chưa rõ đề nha

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)