Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{n-1}{n!}=\frac{n}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
Áp dụng vào M ta được:
\(M=\frac{1}{2!}-\frac{2}{3!}-\frac{3}{4!}-\frac{4}{5!}-...-\frac{2013}{2014!}\)
\(=\frac{1}{2!}-\left(\frac{1}{2!}-\frac{1}{3!}\right)-\left(\frac{1}{3!}-\frac{1}{4!}\right)-...-\left(\frac{1}{2013!}-\frac{1}{2014!}\right)\)
\(=\frac{1}{2!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{3!}+\frac{1}{4!}-...-\frac{1}{2013!}+\frac{1}{2014!}=\frac{1}{2014!}\)
Bài 3 :
Ta có : \(x^2+2\ge2\forall x\Rightarrow\left(x^2+2\right)^2\ge4\forall x\)
\(\left|y-1\right|\ge0\forall y\)
Nên K = \(\left(x^2+2\right)^2+\left|y-1\right|+2014\ge4+0+2014=2018\)
Vậy Kmin = 2018 khi x2 + 2 = 2
<=> x2 = 0
<=> x = 0
|y - 1| = 0
<=> y - 1 = 0
<=> y = 1
\(M=0.5-\dfrac{2}{3!}-\dfrac{3}{4!}-...-\dfrac{2013}{2014!}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{2014}\)