Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(\in\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
Các số nguyên có giá trị tuyệt đối nhỏ hơn 20 gồm 39 số là :
-19,-18,...,-1,0,1,...,18,19 (1)
Giả sử 39 số nói trên viết thành dãy số sau :
a1,a2,a3,...,a39
Cần tìm tổng :
S = ( a1 - 1 ) + ( a2 - 2 ) + ( a3 - 3 ) + ... + ( a39 - 39 )
= ( a1 + a2 + a3 + ... + a39 ) - ( 1 + 2 + 3 + ... + 39 )
Ta thấy tổng của dãy ( 1 ) bằng 0 nên a1 + a2 + a3 + ... + a39 = 0. Do đó ;
S = -(1 + 2 + 3 + ... + 39 ) = \(-\frac{40.39}{2}=-780\)
Các số nguyên có giá trị tuyệt đối nhỏ hơn 20 gồm 39 số là :
-19,-18,...,-1,0,1,...,18,19 (1)
Giả sử 39 số nói trên viết thành dãy số sau :
a1,a2,a3,...,a39
Cần tìm tổng :
S = ( a1 - 1 ) + ( a2 - 2 ) + ( a3 - 3 ) + ... + ( a39 - 39 )
= ( a1 + a2 + a3 + ... + a39 ) - ( 1 + 2 + 3 + ... + 39 )
Ta thấy tổng của dãy ( 1 ) bằng 0 nên a1 + a2 + a3 + ... + a39 = 0. Do đó ;
S = -(1 + 2 + 3 + ... + 39 ) = −40.392 =−780
k nha
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt