Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(0,1\left(2\right)=\frac{12-1}{90}=\frac{11}{90}\)
\(0,\left(27\right)=\frac{27}{99}=\frac{3}{11}\)
\(3,\left(42\right)=3+\frac{42}{99}=\frac{113}{33}\)
\(3,\left(45\right)=3+\frac{45}{99}=\frac{38}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tử và mẫu có tổng = 18 nên :
18 = 2 + 16 = 3 + 15 = 4 +14 = 5 + 13 = 6 + 12 = 7 + 11 = 8 + 10 = 9 + 9.
Do phân số tối giản nên có thể chọn 15 cặp:
\(\frac{5}{13}\) hoặc \(\frac{7}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
0,7=\(\frac{7}{10}\)
0,621=\(\frac{621}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(-1,\left(3\right)=-\dfrac{4}{3}\)
b: \(0,\left(72\right)=\dfrac{8}{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có: \(m^3+3m^2+2m+5=m.\left(m^2+3m+2\right)+5\)
\(=m.\left[m.\left(m+1\right)+2.\left(m+1\right)\right]+5\)
\(=m.\left(m+1\right).\left(m+2\right)+5\)
Giả sử \(d\) là ƯCLN của \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) chia hết cho d và \(m.\left(m+1\right).\left(m+2\right)+6\) chia hết cho \(d\)
\( \implies\) \(\left[m.\left(m+1\right).\left(m+2\right)+6\right]-\left[m.\left(m+1\right).\left(m+2\right)+5\right]\) chia hết cho \(d\)
\( \implies\) \(1\) chia hết cho \(d\)
\( \implies\) \(d=1\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+5\) và \(m.\left(m+1\right).\left(m+2\right)+6\) nguyên tố cùng nhau
Vậy \(A\) là phân số tối giản
b)Ta thấy : \(m;m+1;m+2\) là \(3\) số tự nhiên liên tiếp nên nếu \(m\) chia \(3\) dư \(1\) thì \(m+2\) chia hết cho \(3\) ; nếu \(m\) chia \(3\) dư \(2\) thì \(m+1\) chia hết cho \(3\)
Do đó : \(m.\left(m+1\right).\left(m+2\right)\) chia hết cho \(3\) . Mà \(6\) chia hết cho \(3\)
\( \implies\) \(m.\left(m+1\right).\left(m+2\right)+6\) có ước nguyên tố là \(3\)
Vậy \(A\) là số thập phân vô hạn tuần hoàn
Lời giải:
$0,(15)=\frac{15}{99}=\frac{5}{33}$