Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\pi R^2=36\pi\Rightarrow R=6\)
Phương trình đường tròn:
\(\left(x+2\right)^2+\left(y-0\right)^2=36\)
\(\Leftrightarrow x^2+y^2+4x-32=0\)
Bài 1:
\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)
\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)
\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)
Bài 2:
Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?
Không hỏi thì làm sao mà biết cần tính gì
Ta có :\(|A|\ge B\left(B\ge0\right)\Leftrightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\)
\(|A|\le B\left(B\le0\right)\Leftrightarrow-B\le A\le B\)
Áp dụng vào bài ta có :
a. \(4x^2\le1\Leftrightarrow|2x|\le1\Leftrightarrow-1\le2x\le1\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
Vậy nghiệm của bất phương trình đã cho là \(-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
b.\(x^2+2x+1>0\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow x\ne-1\)(do \(\left(x+1\right)^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne-1\)
c.\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow|x|\ge2\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
Vậy nghiệm của bất phương trình đã cho là \(x\ge2\) hoặc \(x\le-2\)
d.\(-x^2+4x+5>0\Leftrightarrow-\left(x^2-4x+4\right)+9>0\Leftrightarrow\left(x-2\right)^2< 9\Leftrightarrow-3< x-2< 3\Leftrightarrow-1< x< 5\)Vậy nghiệm của bất phương trình đã cho là \(-1< x< 5\)
e. \(x^2-2x+1< 9\Leftrightarrow\left(x-1\right)^2< 9\Leftrightarrow|x-1|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)Vậy nghiệm của bất phương trình đã cho là \(-2< x< 4\)
f. \(2x^2>0\Leftrightarrow x^2>0\Leftrightarrow x\ne0\)( vì \(x^2\ge0\) với mọi x)
Vậy nghiệm của bất phương trình đã cho là \(x\ne0\)
a: góc C=90-30=60 độ
Xét ΔBAC vuông tại A có cos B=AB/BC
nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)
=>AC=2cm
b: Xét ΔbAC vuông tại A có cos B=AB/BC
nên AB/BC=1/2
=>BC=2
=>AC=căn 3
a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)
\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)
b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)
c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\)
\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)
\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)
\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)
mấy câu kia cũng dùng Vi-ét xử tiếp nha
a: Ta có: \(\left(x+1\right)^2=0\)
=>x+1=0
hay x=-1
Thay x=-1 vào \(mx^2-\left(2m+1\right)x+m=0\), ta được:
m+2m+1+m=0
=>3m=-1
hay m=-1/3
b:x+2=0
nên x=-2
Thay x=-2 vào \(\dfrac{mx}{x+3}+3m-1=0\), ta được:
\(\dfrac{-2m}{-2+3}+3m-1=0\)
=>-2m+3m-1=0
=>m=1
d: 3x-2=0
=>x=2/3
Thay x=2/3 vào (m+3)x-m+4=0, ta được:
\(\dfrac{2}{3}\left(m+3\right)-m+4=0\)
\(\Leftrightarrow\dfrac{2}{3}m+2-m+4=0\)
=>6-1/3m=0
=>1/3m=6
hay m=18
ta có: (a-b)2 \(\ge\) 0
=> a2 + b2 - 2ab \(\ge\) 0
=> a2 +b2 - ab \(\ge\) 0
=> a2 +b2 \(\ge\) ab
=> (a+ b)(a2 +b2 - ab) \(\le\) ab(a+b) (vì a\(\le0;\) b\(\le0\) nên a+b \(\le\)0)
=> a3 + b3 \(\le\) ab(a+b)
=>đpcm.
Cuối năm rồi sao vẫn làm bài này thế :D
Đáp án : C . Vì C không chứa nghiệm của pt đã cho