Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN
d: Ta có: CI⊥AM tại I
=>ΔCIM vuông tại I

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN
d: ΔCAM cân tại C
mà CO là đường cao
nên CO là đường trung trực của AM
=>O nằm trên đường trung trực của AM
=>OA=OM(2)
Ta có: ΔBAN cân tại B
mà BO là đường cao
nên BO là đường trung trực của AN
=>O nằm trên đường trung trực của AN
=>OA=ON(1)
Từ (1),(2) suy ra OA=ON=OM
=>O là tâm đường tròn đường tròn ngoại tiếp ΔMAN
Ta có: \(\hat{CAM}=\hat{CAN}+\hat{MAN}\)
\(=90^0-\hat{BAN}+\hat{MAN}\)
mà \(\hat{CAM}=\hat{CMA}\)
nên \(\hat{CMA}=90^0-\hat{BAN}+\hat{MAN}\)
=>\(\hat{NMA}=90^0-\hat{BNA}+\hat{MAN}\)
=>\(\hat{NMA}+\hat{BNA}=90^0+\hat{MAN}\)
=>\(\hat{NMA}+\hat{MNA}=90^0+\hat{MAN}\)
Xét ΔMAN có \(\hat{NMA}+\hat{AMN}+\hat{MAN}=180^0\)
=>\(90^0+2\cdot\hat{MAN}=180^0\)
=>\(2\cdot\hat{MAN}=90^0\)
=>\(\hat{MAN}=45^0\)
Xét (O;OM) có \(\hat{MAN}\) là góc nội tiếp chắn cung MN
=>\(\hat{MON}=2\cdot\hat{MAN}=2\cdot45^0=90^0\)
Xét ΔMON có OM=ON và \(\hat{MON}=90^0\)
nên ΔMON vuông cân tại O

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN

a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN

(bạn tự vẽ hình)
Bài 1: Xét tam giác ABC vuông có 2 đường phân giác BE, CF cắt nhau tại K
=> K là tâm đường tròn nội tiếp tam giác
=> AK là phân giác góc BAC
Đợi xíu mình giải cho. Thích bài nào giải bài đó nhé tại nhiều quá @@

a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
a: Xét ΔAHM và ΔADM có
AH=AD
\(\hat{HAM}=\hat{DAM}\)
AM chung
Do đó: ΔAHM=ΔADM
=>\(\hat{AHM}=\hat{ADM}\)
=>\(\hat{ADM}=90^0\)
=>MD⊥BA tại D
b: Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}=90^0\)
\(\hat{BNA}+\hat{HAN}=90^0\) (ΔNHA vuông tại H)
mà \(\hat{CAN}=\hat{HAN}\) (AN là phân giác của góc HAC)
nên \(\hat{BAN}=\hat{BNA}\)
=>ΔBAN cân tại B
=>BA=BN
c:
ta có: \(\hat{CAM}+\hat{BAM}=\hat{CAB}=90^0\)
\(\hat{CMA}+\hat{HAM}=90^0\) (ΔHAM vuông tại H)
mà \(\hat{BAM}=\hat{HAM}\) (AM là phân giác của góc HAB)
nên \(\hat{CAM}=\hat{CMA}\)
=>CA=CM
AB+AC-BC
=BN+CM-BC
=BM+MN+CN+NM-BM-MN-CN
=MN
d: ΔCAM cân tại C
mà CO là đường cao
nên CO là đường trung trực của AM
=>O nằm trên đường trung trực của AM
=>OA=OM(2)
Ta có: ΔBAN cân tại B
mà BO là đường cao
nên BO là đường trung trực của AN
=>O nằm trên đường trung trực của AN
=>OA=ON(1)
Từ (1),(2) suy ra OA=ON=OM
=>O là tâm đường tròn đường tròn ngoại tiếp ΔMAN
Ta có: \(\hat{CAM}=\hat{CAN}+\hat{MAN}\)
\(=90^0-\hat{BAN}+\hat{MAN}\)
mà \(\hat{CAM}=\hat{CMA}\)
nên \(\hat{CMA}=90^0-\hat{BAN}+\hat{MAN}\)
=>\(\hat{NMA}=90^0-\hat{BNA}+\hat{MAN}\)
=>\(\hat{NMA}+\hat{BNA}=90^0+\hat{MAN}\)
=>\(\hat{NMA}+\hat{MNA}=90^0+\hat{MAN}\)
Xét ΔMAN có \(\hat{NMA}+\hat{AMN}+\hat{MAN}=180^0\)
=>\(90^0+2\cdot\hat{MAN}=180^0\)
=>\(2\cdot\hat{MAN}=90^0\)
=>\(\hat{MAN}=45^0\)
Xét (O;OM) có \(\hat{MAN}\) là góc nội tiếp chắn cung MN
=>\(\hat{MON}=2\cdot\hat{MAN}=2\cdot45^0=90^0\)
Xét ΔMON có OM=ON và \(\hat{MON}=90^0\)
nên ΔMON vuông cân tại O