Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R
y’ = 2x3 – 6x = 2x(x2 – 3)
y’ = 0 ⇔ x = 0, x = ±√3
Bảng biến thiên:
Đồ thị hàm số:
b)
y’’ = 6x2 – 6x
y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1
y’(-1) = 4, y’’(1) = -4, y(± 1) = -1
Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3
Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3
c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).
Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).
Dễ thấy:
m < -6: ( 1) vô nghiệm
m = -6 : (1) có 2 nghiệm
-6 < m < 3: (1) có 4 nghiệm
m = 3: ( 1) có 3 nghiệm
m > 3: (1) có 2 nghiệm
Lời giải
khảo sát
TXD mọi x
y' =3x^2 -6x =3x(x-2)
y' =0 => x= 0 hoặc x=2
y'' =6x-6
y''(0) =-6 <0 hàm đạt cực đại tại x=0
y''(2) =6 >0 hàm đạt cực tiểu tại x =2
y'' =0 => x=1 hàm có điểm uốn tại x=1
hàm đi từ - vc--> +vc đi góc (III) lên (IV)
Vẽ đồ thị
Các điểm quan trọng
cực đại A(0,0)
cực tiểu B(2,-4)
uốn C(1,-2)
Các điểm phụ trọng
giao với trục hoành E(0,0); \(F\left(3;0\right)\)
Giao với trục tung: \(A\left(0,0\right)\)
Đồ thị
b)
nhìn vào đồ thị số y=x^3 -3x^2
Hàm số x^3 -3x^2 -m có 3 nghiệm phân biệt
khi 0<m<-4
Giải:
a) Xét \(y'=3x^2+2mx\)
Ta thấy \(y'=3x^2+2mx=0\) có \(\Delta'=m^2>0\forall m\neq 0\) nên luôn có hai nghiệm phân biệt, đồng nghĩa với hàm số đã cho luôn có cực đại, cực tiểu với mọi \(m\neq 0\)
b) Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của $m$ nghĩa là phương trình \(x^3+mx^2-1=0\) luôn có nghiệm dương với mọi \(m\)
Xét hàm $y$ liên tục trên tập xác định.
Nếu \(m>0\) có \(\left\{\begin{matrix} f(0)=-1<0\\ f(m+1)=(m+1)^3+m(m+1)^2-1>0\end{matrix}\right.\Rightarrow f(0).f(m+1)<0\)
Do đó phương trình luôn có nghiệm thuộc khoảng \((0;m+1)\), tức là nghiệm dương.
Nếu \(m<0\) có \(\left\{\begin{matrix} f(0)=-1<0\\ f(1-m)=m^2-2m>0\forall m<0\end{matrix}\right.\Rightarrow f(0).f(1-m)<0\)
Do đó phương trình luôn có nghiệm thuộc khoảng \((0,1-m)\) , tức nghiệm dương
Từ hai TH ta có đpcm.
c) Để pt có $3$ nghiệm phân biệt thì \(y'=3x^2+2mx\) phải có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(f(x_1)f(x_2)<0\)
Kết hợp với định lý Viete:
\(\Leftrightarrow x_1^3+x_2^3+m(x_1^2+x_2^2)-1>0\)
\(\Leftrightarrow 4m^3-27>0\Leftrightarrow m>\frac{3}{\sqrt[3]{4}}\)
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
1.
Hàm trùng phương có đúng 1 cực trị khi:
TH1: \(a=m=0\)
TH2: \(ab=-m>0\Leftrightarrow m< 0\)
\(\Rightarrow m\le0\)
Đáp án B
2.
\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)
Hàm số có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)
\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)
\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)
Chọn B.
Ta có: x 4 - 3 x 2 + m = 0
Dựa vào đồ thị ta có phương trình có 3 nghiệm phân biệt khi -m-3 = -3 => m = 0