K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Trong `5` chu kì vật đi qua thời điểm vận tốc có độ lớn `5\pi(cm//s)` là `20` lần.

`=>1` lần vật đi trong: `\Delta t=T/12+T/6=T/4`

`=>` Kể từ `t=0` thời điểm vận tốc của vật có độ lớn `5\pi(cm//s)` lần thứ `21` là:

            `t=T/4+5T=10,5(s)`.

22 tháng 10 2023

 Từ pt \(v=16\pi\cos\left(4\pi t-\dfrac{\pi}{6}\right)=16\pi\cos\left(4\pi t-\dfrac{2\pi}{3}+\dfrac{\pi}{2}\right)\) (cm/s), ta suy ra \(\omega=4\pi\left(rad/s\right)\), lại có \(\omega A=16\pi\Leftrightarrow A=\dfrac{16\pi}{\omega}=4\left(cm\right)\)

 \(\varphi_0=-\dfrac{2\pi}{3}\)\(T=\dfrac{2\pi}{\omega}=0,5\left(s\right)\)

 Đường tròn lượng giác: 

 

 Từ đây, ta có thể thấy tại thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ khi dao động, góc quét của vật là \(\Delta\varphi=\dfrac{\pi}{3}+1011.2\pi=\dfrac{6067}{3}\pi\) (rad)

 Thời điểm lần thứ 2023 vật chuyển động qua vị trí \(x=2\) kể từ lúc bắt đầu dao động là \(\Delta t=\dfrac{\Delta\varphi}{2\pi}.T=\dfrac{\dfrac{6067}{3}\pi}{2\pi}.0,5=\dfrac{6067}{12}\approx505,58\left(s\right)\)

8 tháng 11 2023

Phương trình: \(x=2cos\left(5\pi t-\dfrac{\pi}{4}\right)\)

a)Biên độ: \(A=2cm\)

Chu kì: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{5\pi}=0,4s\)

Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{0,4}=2,5Hz\)

Chiều dài quỹ đạo: \(L=2A=2\cdot2=4cm\)

b)Phương trình chất điểm:

Vận tốc: \(v=-\omega Asin\left(\omega t+\varphi\right)=-10\pi sin\left(5\pi t-\dfrac{\pi}{4}\right)\)

Gia tốc: \(a=-\omega^2Acos\left(\omega t+\varphi\right)=-500cos\left(5\pi t-\dfrac{\pi}{4}\right)\)

c)Em thay giá trị \(t=0,2s\) vào từng pt nhé.

20 tháng 12 2023

Tại sao gia tốc lại bằng 250căn2loading...  

11 giờ trước (18:53)

Ta có phương trình dao động điều hòa của vật:

\(x = 8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Trong đó:

  • \(x\) là vị trí của vật (đơn vị cm),
  • \(t\) là thời gian (đơn vị s),
  • \(8\) là biên độ dao động (đơn vị cm),
  • \(5 \pi\) là tần số góc (rad/s),
  • \(\frac{\pi}{3}\) là pha ban đầu.

Chúng ta sẽ lần lượt giải quyết từng câu hỏi.

a. Xác định trạng thái đầu

Trạng thái đầu của vật là trạng thái tại thời điểm \(t = 0\).

Thay \(t = 0\) vào phương trình dao động:

\(x \left(\right. 0 \left.\right) = 8 cos ⁡ \left(\right. 5 \pi \times 0 + \frac{\pi}{3} \left.\right) = 8 cos ⁡ \left(\right. \frac{\pi}{3} \left.\right)\)

Biết rằng \(cos ⁡ \left(\right. \frac{\pi}{3} \left.\right) = \frac{1}{2}\), ta có:

\(x \left(\right. 0 \left.\right) = 8 \times \frac{1}{2} = 4 \textrm{ } \text{cm}\)

Vậy, trạng thái đầu của vật là \(x = 4 \textrm{ } \text{cm}\).

b. Xác định thời điểm lần đầu vật đạt vị trí biên dương

Vị trí biên dương là giá trị cực đại của \(x\), tức là khi \(x = 8 \textrm{ } \text{cm}\) (biên độ dao động).

Ta cần tìm thời điểm \(t\) sao cho:

\(8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 8\)

Chia hai vế cho 8:

\(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 1\)

Giải phương trình:

\(5 \pi t + \frac{\pi}{3} = 2 k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Giải phương trình trên:

\(5 \pi t = 2 k \pi - \frac{\pi}{3}\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{2 k \pi - \frac{\pi}{3}}{5 \pi} = \frac{2 k - \frac{1}{3}}{5}\)

Khi \(k = 0\), ta có:

\(t = \frac{- \frac{1}{3}}{5} = - \frac{1}{15} \textrm{ } \text{s}\)

Vì thời gian phải dương, ta chọn \(k = 1\):

\(t = \frac{2 - \frac{1}{3}}{5} = \frac{\frac{5}{3}}{5} = \frac{1}{3} \textrm{ } \text{s}\)

Vậy, thời điểm lần đầu vật đạt vị trí biên dương là \(t = \frac{1}{3} \textrm{ } \text{s}\).

c. Xác định thời điểm lần đầu vật qua vị trí cân bằng

Vị trí cân bằng là \(x = 0\), tức là khi \(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 0\).

Ta giải phương trình:

\(cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right) = 0\)

Điều này xảy ra khi:

\(5 \pi t + \frac{\pi}{3} = \frac{\pi}{2} + k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Giải phương trình:

\(5 \pi t = \frac{\pi}{2} + k \pi - \frac{\pi}{3}\)

Tính toán:

\(5 \pi t = \frac{\pi}{6} + k \pi\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{\frac{\pi}{6} + k \pi}{5 \pi} = \frac{1}{30} + \frac{k}{5}\)

Khi \(k = 0\), ta có:

\(t = \frac{1}{30} \textrm{ } \text{s}\)

Vậy, thời điểm lần đầu vật qua vị trí cân bằng là \(t = \frac{1}{30} \textrm{ } \text{s}\).

d. Xác định thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\), với \(v > 0\)

Vị trí \(x = - 4 \textrm{ } \text{cm}\) ứng với phương trình:

\(- 4 = 8 cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Chia hai vế cho 8:

\(- \frac{1}{2} = cos ⁡ \left(\right. 5 \pi t + \frac{\pi}{3} \left.\right)\)

Giải phương trình:

\(5 \pi t + \frac{\pi}{3} = \pi - \frac{\pi}{3} + 2 k \pi \text{v}ớ\text{i} \textrm{ } k \in \mathbb{Z}\)

Tính toán:

\(5 \pi t + \frac{\pi}{3} = \frac{2 \pi}{3} + 2 k \pi\)\(5 \pi t = \frac{2 \pi}{3} + 2 k \pi - \frac{\pi}{3} = \frac{\pi}{3} + 2 k \pi\)

Chia cả hai vế cho \(5 \pi\):

\(t = \frac{\frac{\pi}{3} + 2 k \pi}{5 \pi} = \frac{1}{15} + \frac{2 k}{5}\)

Vậy:

\(t_{1} = \frac{1}{15} \textrm{ } \text{s} \left(\right. k = 0 \left.\right)\)\(t_{2} = \frac{7}{15} \textrm{ } \text{s} \left(\right. k = 1 \left.\right)\)\(t_{3} = \frac{13}{15} \textrm{ } \text{s} \left(\right. k = 2 \left.\right)\)\(t_{4} = \frac{19}{15} \textrm{ } \text{s} \left(\right. k = 3 \left.\right)\)\(t_{5} = \frac{25}{15} = \frac{5}{3} \textrm{ } \text{s} \left(\right. k = 4 \left.\right)\)

Vậy, thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\) với \(v > 0\) là \(t = \frac{5}{3} \textrm{ } \text{s}\).


Tóm tắt:

  • a. Trạng thái đầu: \(x = 4 \textrm{ } \text{cm}\)
  • b. Thời điểm lần đầu vật đạt vị trí biên dương: \(t = \frac{1}{3} \textrm{ } \text{s}\)
  • c. Thời điểm lần đầu vật qua vị trí cân bằng: \(t = \frac{1}{30} \textrm{ } \text{s}\)
  • d. Thời điểm lần thứ 5 vật qua vị trí \(x = - 4 \textrm{ } \text{cm}\) với \(v > 0\)\(t = \frac{5}{3} \textrm{ } \text{s}\)
11 giờ trước (18:54)

Tham khảo

23 tháng 2 2019

Chọn C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(x=10cos\left(5\pi\cdot\dfrac{1}{15}+\dfrac{\pi}{3}\right)=-5\\ v=x'=-50\pi sin\left(5\pi\cdot\dfrac{1}{15}+\dfrac{\pi}{3}\right)=-25\pi\sqrt{3}\)

15 tháng 10 2023

Ta có : \(A=4cm\)

\(cos\alpha_1=\dfrac{-2\sqrt{2}}{4}=-\dfrac{\sqrt{2}}{2}\Rightarrow\alpha_1=\dfrac{3\pi}{4}rad\)

\(cos\alpha_2=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\Rightarrow\alpha_2=\dfrac{\pi}{6}rad\)

\(\Delta\varphi=\left(\dfrac{\pi}{2}-\dfrac{3\pi}{4}\right)+\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)=\dfrac{\pi}{12}rad\)

Có : \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2s\)

\(\Delta t=\dfrac{\Delta\varphi}{2\pi}.T=\dfrac{\dfrac{\pi}{12}}{2\pi}.2=\dfrac{1}{12}s\)

Vậy ...

Hình ảnh biểu diễn :