\(y=\sqrt{3}x+\sqrt{3}\) được vẽ bằng compa và thước thẳng (h.8)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 4 2017

Ta có: \(\sqrt{3}\) = \(\sqrt{2+1}\) = \(\sqrt{\left(\sqrt{2}\right)^2+1^2}\)

Hình vẽ SGK có : OC = OB = \(\sqrt{2}\) và theo định lí Py-ta-go t a có :

OD = \(\sqrt{OC^2+CD^2}\)= \(\sqrt{\left(\sqrt{2}\right)^2+1^2}\)= \(\sqrt{3}\)

Dùng compa ta xác định được điểm biểu diễn số \(\sqrt{3}\). trên Oy. Từ đó xác định được điểm A.
bai4

6 tháng 12 2017

Cho x = 0 => y = √3 ta được (0; √3).

Cho y = 0 => √3 x + √3 = 0 => x = -1 ta được (-1; 0).

Như vậy để vẽ được đồ thị hàm số y = √3 x + √3 ta phải xác định được điểm √3 trên Oy.

Các bước vẽ đồ thị y = √3 x + √3 :

   + Dựng điểm A(1; 1) được OA = √2.

   + Dựng điểm biểu diễn √2 trên Ox: Quay một cung tâm O, bán kính OA cắt tia Ox, được điểm biểu diễn √2.

   + Dựng điểm B(√2; 1) được OB = √3.

   + Dựng điểm biểu diễn √2. Trên trục Oy: Quay một cung tâm O, bán kính OB cắt tia Oy, được điểm biểu diễn √3

   + Vẽ đường thẳng qua điểm biểu diễn √3 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √3 x + √3.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Áp dụng vẽ đồ thị hàm số y = √5 x + √5

- Cho x = 0 => y = √5 ta được (0; √5).

- Cho y = 0 => √5 x + √5 = 0 => x = -1 ta được (-1; 0).

Ta phải tìm điểm trên trục tung có tung độ bằng √5.

Cách vẽ:

   + Dựng điểm A(2; 1) ta được OA = √5.

   + Dựng điểm biểu diễn √5 trên trục Oy. Quay một cung tâm O, bán kính OA cắt tia Oy, được điểm biểu diễn √5. Vẽ đường thẳng qua điểm biểu diễn √5 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √5 x + √5.

Để học tốt Toán 9 | Giải bài tập Toán 9

 

25 tháng 6 2019

a) Cho x = 0 => y = √3 ta được (0; √3).

Cho y = 0 => √3 x + √3 = 0 => x = -1 ta được (-1; 0).

Như vậy để vẽ được đồ thị hàm số y = √3 x + √3 ta phải xác định được điểm √3 trên Oy.

Các bước vẽ đồ thị y = √3 x + √3 :

   + Dựng điểm A(1; 1) được OA = √2.

   + Dựng điểm biểu diễn √2 trên Ox: Quay một cung tâm O, bán kính OA cắt tia Ox, được điểm biểu diễn √2.

   + Dựng điểm B(√2; 1) được OB = √3.

   + Dựng điểm biểu diễn √2. Trên trục Oy: Quay một cung tâm O, bán kính OB cắt tia Oy, được điểm biểu diễn √3

   + Vẽ đường thẳng qua điểm biểu diễn √3 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √3 x + √3.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Áp dụng vẽ đồ thị hàm số y = √5 x + √5

- Cho x = 0 => y = √5 ta được (0; √5).

- Cho y = 0 => √5 x + √5 = 0 => x = -1 ta được (-1; 0).

Ta phải tìm điểm trên trục tung có tung độ bằng √5.

Cách vẽ:

   + Dựng điểm A(2; 1) ta được OA = √5.

   + Dựng điểm biểu diễn √5 trên trục Oy. Quay một cung tâm O, bán kính OA cắt tia Oy, được điểm biểu diễn √5. Vẽ đường thẳng qua điểm biểu diễn √5 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √5 x + √5.

Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 4 2017

a)Vẽ đồ thị:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 4 2017

a) Xem hình trên

b) A(2; 4), B(4; 4).

Tính chu vi ∆OAB.

Dễ thấy AB = 4 - 2 = 2 (cm).

Áp dụng định lý Py-ta-go, ta có:

OA = = 2√5 (cm), OB = = 4√2 (cm).

Tính diện tích ∆OAB.

Gọi C là điểm biểu diễn số 4 trên trục tung, ta có:

= - = OC . OB - OC . AC.

= . 42 - . 4 . 2 = 8 - 4 = 4 (cm2).

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5