Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pH = -log[H+]
=> [ H + ] = 10 - p H = 10 - 2 , 44 ≈ 0 , 00363 ≈ 3 , 6 . 10 - 3 (mol/L).
Chọn đáp án C
6.
d nhận \(\left(2;-1;-3\right)\) là 1 vtcp
7.
Phương trình mặt phẳng (P) qua A và vuông góc d nhận \(\left(3;2;-1\right)\) là 1 vtpt có dạng:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
Pt tham số d: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
A' là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow A'\left(1;0;-1\right)\)
8.
Tọa độ H là \(H\left(0;2;0\right)\) (giữ tung độ, thay hoành độ và cao độ bằng 0 là xong)
4.
\(\left(1+e^x\right)x=\left(1+e\right)x\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Diện tích:
\(S=\int\limits^1_0\left[\left(1+e\right)x-\left(1+e^x\right)x\right]dx\)
\(=\int\limits^1_0e.xdx-\int\limits^1_0x.e^xdx\)
\(=\left(\frac{1}{2}e.x^2-\left(x-1\right)e^x\right)|^1_0=\frac{e}{2}-1=\frac{e-2}{2}\)
5.
Do 3 điểm A;B;C lần lượt thuộc 3 trục tọa độ nên mặt cầu đi qua 4 điểm có tâm \(I\left(\frac{1}{2};-1;2\right)\)
\(R=IA=\sqrt{\left(\frac{1}{2}\right)^2+\left(-1\right)^2+2^2}=\frac{\sqrt{21}}{2}\)
Phương trình:
\(\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=\frac{21}{4}\)
3.
\(x^2+4y^2=x^2+8.\frac{y^2}{2}\ge9\sqrt[9]{\frac{x^2y^{16}}{2^8}}\)
\(\Rightarrow\sqrt{x^2+4y^2}\ge\sqrt{9\sqrt[9]{\frac{x^2y^{16}}{2^8}}}=3\sqrt[9]{\frac{xy^8}{2^4}}\)
\(\Rightarrow x+\sqrt{x^2+4y^2}\ge x+3\sqrt[9]{\frac{xy^8}{2^4}}\ge4\sqrt[4]{x\sqrt[3]{\frac{xy^8}{2^4}}}=4\sqrt[12]{\frac{x^4y^8}{2^4}}=4\sqrt[3]{\frac{xy^2}{2}}\)
\(\Rightarrow\left(x+\sqrt{x^2+4y^2}\right)^3\ge\left(4\sqrt[3]{\frac{xy^2}{2}}\right)^3=32xy^2\)
\(\Rightarrow P\le\frac{4xy^2}{32xy^2}=\frac{1}{8}\)
\(P_{max}=8\) khi \(y=x\sqrt{2}\)
4.
\(y'=x^2+2\left(m+1\right)x+4\) (1)
Để hàm số nghịch biến trên 1 đoạn có độ dài bằng \(2\sqrt{5}\)
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb thỏa mãn \(\left|x_2-x_1\right|=2\sqrt{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)^2-4>0\\\left(x_2-x_1\right)^2=20\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+2m-3>0\\\left(x_1+x_2\right)^2-4x_1x_2=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\4\left(m+1\right)^2-16=20\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
\(\Rightarrow\sum m=-2\)
5.
Pt đoạn chắn: \(\frac{x}{2}+\frac{y}{-3}+\frac{z}{4}=1\Leftrightarrow6x-4y+3z+12=0\)
Mặt phẳng (MNP) nhận \(\left(6;-4;3\right)\) là 1 vtpt
1.
\(v\left(t\right)=s'\left(t\right)=-3t^2+12t+17=-3\left(t-2\right)^2+29\le29\)
\(\Rightarrow v\left(t\right)_{max}=29\) khi \(t=2\left(s\right)\)
2.
E là trung điểm AD \(\Rightarrow ABCE\) là hình vuông
Gọi O là giao điểm AC và BE, qua O kẻ đường thẳng song song SA cắt SC tại I
\(\Rightarrow\) I là tâm mặt cầu ngoại tiếp S.ABCE
\(\Rightarrow R=IC=\frac{SC}{2}\)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\) \(\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)
\(\Rightarrow R=\frac{AC}{2}=a\)
15.
ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)
\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)
\(\Leftrightarrow x^2+2x+1>2\)
\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)
16.
\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)
17.
\(z=2+2i-6i-6i^2=8-4i\)
\(\Rightarrow\overline{z}=8+4i\)
11.
\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)
12.
\(log\left(10a^3\right)=log10+loga^3=1+3loga\)
13.
\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)
\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)
14.
\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng
8.
\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)
\(\Leftrightarrow\left(a+3b\right)^2=16ab\)
\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)
\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)
\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)
9.
Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz
5.
\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)
\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)
\(\Rightarrow w=z_1-2z_2=2-3i\)
\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)
6.
\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt
Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow x+2y+z-3=0\)
7.
Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?
Xếp bất kì: có \(9!\) cách
Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách
Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)
11.
Thay tọa độ M vào pt d ta được:
\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)
12.
\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)
\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)
\(\Rightarrow\widehat{A'BA}=60^0\)
\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)
8.
\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)
Đề thiếu, bạn tự điền số và tính
9.
\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)
\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)
10.
\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)
Điểm biểu diễn là \(Q\left(3;-2\right)\)
14.
Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt
Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp
Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)
(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt
Phương trình (Q):
\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)
\(\Leftrightarrow x+8y+5z+13=0\)
15.
Phương trình hoành độ giao điểm:
\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)
\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)
10.
Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao
11.
Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)
\(I=\int f'\left(x\right)e^{2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)
\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)
12.
Đúng là \(y=\left(e+1\right)x\) và \(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu
13.
Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)
11.
Thay tọa độ vào coi cái nào thỏa mãn thôi, câu này chắc ko vấn đề
12.
Gọi cạnh của hình lập phương là x
\(\Rightarrow\) Đường chéo bằng \(x\sqrt{3}\)
\(\Rightarrow x\sqrt{3}=2\sqrt{3}a\Rightarrow x=2a\)
\(\Rightarrow S_{tp}=6x^2=24a^2\)
13.
\(R=\frac{x}{2}=a\sqrt{2}\Rightarrow V=\frac{4}{3}\pi R^3=\frac{8\sqrt{2}}{3}\pi a^3\)
(Bán kính mặt cầu nội tiếp lập phương bằng 1 nửa cạnh. Bán kính mặt cầu ngoại tiếp lập phương bằng \(\frac{x\sqrt{3}}{2}\) với x là cạnh)
14.
Phương trình hoành độ giao điểm: \(x^3-3x=x\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
Diện tích:
\(S=\int\limits^0_{-2}\left(x^3-3x-x\right)dx+\int\limits^2_0\left(x-x^3+3x\right)dx=8\)
15.
\(v'\left(t\right)=a\left(t\right)=0\Rightarrow3t^2\left(2-t\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\)
Bảng biến thiên \(v\left(t\right)\)
Từ BBT ta thấy \(v\left(t\right)_{max}\) tại \(t=2\)
8.
\(\overrightarrow{AB}=\left(3;3;1\right)\Rightarrow\) đường thẳng AB nhận (3;3;1) là 1 vtcp
\(\overrightarrow{OB}=\left(4;1;1\right)\Rightarrow OH=d\left(O;AB\right)=\frac{\left|\left[\overrightarrow{OB};\overrightarrow{AB}\right]\right|}{\left|\overrightarrow{AB}\right|}=\frac{\sqrt{2^2+1^2+\left(-9\right)^2}}{\sqrt{3^2+3^2+1^2}}=\sqrt{\frac{86}{19}}\)
9.
\(\int\limits^3_2\frac{5x+12}{x^2+5x+6}dx=\int\limits^3_2\left(\frac{2}{x+2}+\frac{3}{x+3}\right)dx=\left(2ln\left(x+2\right)+3ln\left(x+3\right)\right)|^3_2\)
\(=3ln6-2ln4-ln5=-4ln2-ln5+3ln6\)
\(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-1\\c=3\end{matrix}\right.\) \(\Rightarrow S=...\)
10.
\(\Rightarrow I=log_a6=\frac{1}{log_6a}=\frac{1}{2}\)
Chọn A