Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
với \(x=-10;y=2\) ,ta có:
\(\left(-10\right)^3-2^3=-1000-8=-1008\)
với \(x=-1;y=0\)
\(\left(-1\right)^3-0^3=-1-0=-1\)
với \(x=2;y=-1\) ,ta có:
\(2^3-\left(-1\right)^3=8-\left(-1\right)=8+1=9\)
với \(x=-0,5;y=1,25\), ta có:
\(\left(-0,5\right)^3-1,25^3=0-2=-2\)
Ta có bảng sau;
Giá trị của x và y |
Giá trị của biểu thức \(\left(x-y\right)\left(x^2+xy+y^2\right)\) |
\(x=-10;y=2\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1008\) |
\(x=-1;y=0\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1\) |
\(x=2;y=-1\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=9\) |
\(x=-0,5;y=1,25\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-2\) |
Trước hết, ta làm tính nhân để rút gọn biểu thức, ta được:
(x - y)(x2 + xy + y2) = x . x2 + x . xy + x . y2 + (-y) . x2 + (-y) . xy + (-y) . y2
= x3 + x2y + xy2 – yx2 – xy2 – y3 = x3 – y3
Sau đó tính giá trị của biểu thức x3 – y3
Ta có:
Khi x = -10; y = 2 thì A = (-10)3 – 23 = -1000 – 8 = 1008
Khi x = -1; y = 0 thì A = (-1)3 – 03 = -1
Khi x = 2; y = -1 thì A = 23 – (-1)3 = 8 + 1 = 9
Khi x = -0,5; y = 1,15 thì
A = (-0,5)3 – 1,253 = -0,125 – 1.953125 = -2,078125
a) Ta có :
\(5x-3=x^2-3x+12\left(1\right)\)
\(x^2-3x+12=\left(x+1\right)\left(x-3\right)\left(2\right)\)
\(\left(x+1\right)\left(x-3\right)=5x-3\left(3\right)\)
b) Lập bảng :
x | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
5x - 3 | -28 | -23 | -18 | -13 | -8 | -3 | 2 | 7 | 12 | 17 | 22 |
\(x^2-3x+12\) | 52 | 40 | 30 | 22 | 16 | 12 | 10 | 10 | 12 | 16 | 22 |
(x+1)(x-3) | 32 | 21 | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 |
Từ bảng trên , ta có :
- Phương trình (1) có có tập nghiệm là \(S=\left\{3;5\right\}\)
- Phương trình (2) vô nghiệm \(S=\varnothing\)
- Phương trình (3) có tập nghiệm là \(S=\left\{0\right\}\)
Thay x = -1, y = 1 vào biểu thức, ta được
a(-1)(-1 - 1) + 13(-1 + 1) = -a(-2) + 10 = 2a.
Vậy đánh dấu x vào ô trống tương ứng với 2a.
1) x2+2x(y+1)+y2+2x+1
=x2+2x(y+1)+(y+1)2
=(x+y+1)2
2) x2+y2+2x+2y+2(x+1)(y+1)+2
=x2+2x+1+y2+2y+1+2(x+1)(y+1)
=(x+1)2+(y+1)2+2(x+1)(y+1)
=(x+1+y+1)2
=(x+y+2)2
3)x2+y2+2x-2y-2xy+1
=x2-2xy+y2+2x-2y+1
=(x-y)2+2(x-y)+1
=(x-y+1)2
Uả? Anh Đăng, sao bài anh làm, thì cách làm và phương hướng làm thì cũng có vẻ thuyết phục đó nhưng sao Bài 1 hình như anh ghi nhầm đề ở chỗ y2+2y+1 mà anh ghi là 2x nên có chút hơi sai sai rồi đó nha, rút kinh nghiệm nha anh! Làm bài hiểu được bài mà ghi đề sai là uổn lắm đó, chú ý nha anh!
f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)
g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)
h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)
i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=4x^2\)
Ta có:
N: x3 – 3x2 + 3x – 1 = x3 – 3 . x2. 1+ 3 . x .12 – 13 = (x – 1)3
U: 16 + 8x + x2= 42 + 2 . 4 . x + x2 = (4 + x)2
= (x + 4)2
H: 3x2 + 3x + 1 + x3 = x3 + 3x2 + 3x + 1
= (x + 1)3 = (1 + x)3
Â: 1 – 2y + y2 = 12 - 2 . 1 . y + y2 = (1 - y)2
= (y - 1)2
Nên:
Vậy: Đức tính đáng quý là "NHÂN HẬU"
Chú ý:
Có thế khai triển các biểu thức (x – 1)3 , (x + 1)3 , (y - 1)2 , (x + 4)2 ... để tìm xem kết quả ứng với chữ nào và điền vào bảng.
Bài giải:
Ta có:
N: x3 – 3x2 + 3x – 1 = x3 – 3 . x2. 1+ 3 . x .12 – 13 = (x – 1)3
U: 16 + 8x + x2= 42 + 2 . 4 . x + x2 = (4 + x)2
= (x + 4)2
H: 3x2 + 3x + 1 + x3 = x3 + 3x2 + 3x + 1
= (x + 1)3 = (1 + x)3
Â: 1 – 2y + y2 = 12 - 2 . 1 . y + y2 = (1 - y)2
= (y - 1)2
Nên:
Vậy: Đức tính đáng quý là "NHÂN HẬU"
Chú ý:
Có thế khai triển các biểu thức (x – 1)3 , (x + 1)3 , (y - 1)2 , (x + 4)2 ... để tìm xem kết quả ứng với chữ nào và điền vào bảng.