Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
BC=căn 3^2+4^2=5cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4
=>BD/3=CD/4=5/7
=>BD=15/7cm; CD=20/7cm
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xet ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA\(\sim\)ΔHAC(g-g)
A B C 3 4 D E 5 15/7
a, Xét tam giác ABC và tam giác DEC ta có
^BAC = ^EDC = 900
^C_ chung
Vậy tam giác ABC ~ tam giác DEC ( g.g )
b, tam giác ABC vuông tại A
Áp dụng định lí Py ta go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=9+16=25\Rightarrow BC=5\)cm
Vì AD là tia phân giác ^A nên \(\frac{AB}{AC}=\frac{BD}{DC}\)mà DC = BC - BD = 5 - BD
\(\Rightarrow\frac{3}{4}=\frac{BD}{5-BD}\Rightarrow15-3BD=4BD\)
\(\Rightarrow7BD=15\Rightarrow BD=\frac{15}{7}\)cm
c, Ta có : \(DC=BC-BD=5-\frac{15}{7}=\frac{20}{7}\)cm
Áp dụng định lí Py ta go cho tam giác vuông tại D ta được :
\(AD^2+DC^2=AC^2\Rightarrow AD^2=AC^2-DC^2=16-\frac{400}{49}\)
\(\Rightarrow AD^2=\frac{384}{49}\Rightarrow AD=\frac{8\sqrt{6}}{7}\)xem sai ở đâu hộ mình nhé, chứ nếu theo hệ thức lượng thì như này
*\(AD.BC=AB.AC\Rightarrow AD=\frac{12}{5}\)*
d, \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.3.4=6\)
A B C H 3 4
Áp dụng định lí Piatago để tính AC=5cm
Xét tam giác BHA và tam giác CBAcó:
\(\widehat{CBA}=\widehat{BHA}=90^o\)
\(\widehat{HAB}=\widehat{BAC}\)( cùng phụ góc BAC)
=> \(\Delta BHA~\Delta CBA\)
=> \(\frac{HA}{BA}=\frac{BA}{CA}\Rightarrow BA^2=HA.CA\Rightarrow HA=\frac{BA^2}{CA}=\frac{9}{5}\)
Áp dụng định lí Pitago trong tam giác BHA ta tính đc : \(BH^2=AC^2-AH^2=\frac{144}{25}\)
=> \(BH=\frac{12}{5}\)