\(\dfrac{R}{2}\)   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

(B) 2r\(\sqrt{3}\)

19 tháng 1 2022

Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)

Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.

Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))

Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)

\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)

Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC

\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.

2 tháng 5 2017

(C)

3 tháng 5 2017

Giải:

Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng

(A) \(\dfrac{1}{3}\) (B) \(\dfrac{1}{2}\) (C) \(\dfrac{1}{\sqrt{2}}\) (D) 2

2 tháng 6 2017

Chọn phương án (C) :

Độ dài của nửa đường tròn có đường kính \(8R\) bằng \(4\pi R\)

2 tháng 6 2017

Chọn phương án (C).

Diện tích của nửa hình tròn có đường kính \(4R\) bằng \(2\pi R^2\)

17 tháng 11 2019

a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)

 Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)

                                                               \(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)

                                                                \(=4R^2\)

                                                                  \(=BC^2\)

( do BC là đường kính, BC=2R)

      Vậy tam giác ABC là tam giác vuông

17 tháng 11 2019

\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)

suy ra góc B=75 độ

suy ra góc C=90 độ -75 độ =15 độ