K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 10 2024

Lời giải:

$(a-b)^2=(b-c)^2$

$\Rightarrow (a-b)^2-(b-c)^2=0$

$\Rightarrow (a-b-b+c)(a-b+b-c)=0$

$\Rightarrow (a-2b+c)(a-c)=0$

$\Rightarrow a=c$ hoặc $a+c=2b$

Không đủ cơ sở để khẳng định ABC là tam giác đều bạn nhé. 

29 tháng 1 2016

Ai trả lời hay mình sẽ tich nhiều

29 tháng 1 2016

fzdyxchgbvrhdfnckudjkzjxrfeudfcchfnvrjfh urkdjfhbv   rujfv  vc bffvn c,kujdfhc n

7 tháng 4 2018

Ta có : 

\(\left(a-b\right)^2\ge0\) ( với mọi độ dài a, b ) 

\(\left(b-c\right)^2\ge0\) ( với mọi độ dài b, c ) 

Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\end{cases}}\) ( chuyển vế ) 

Do đó : 

\(a=b=c\)

Suy ra : tam giác ABC là tam giác đều 

Vậy tam giác ABC là tam giác đều 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Ta có \(\left(a-b\right)^2\ge0\)với mọi độ dài của a, b

và \(\left(b-c\right)^2\ge0\)với mọi độ dài của b, c

Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)(gt)

=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)=> \(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)=> \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)=> a = b = c

=> \(\Delta ABC\)đều (đpcm)

4 tháng 3 2019

+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2

a2+b2>5c2a2+b2>5c2

⇒a2+b2>5a2⇒a2+b2>5a2

⇒b2>4a2⇒b2>4a2

⇒b>2a⇒b>2a (1)

c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2

⇒b2>4c2⇒b2>4c2

⇒b>2c⇒b>2c (2)

Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c

⇒b>a+c⇒b>a+c ( vô lí )

⇒c<a⇒c<a

+) Chứng minh tương tự suy ra c < b

{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^

⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^

⇒3Cˆ<180o⇒3C^<180o

⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)

Vậy...

4 tháng 3 2019

Xin lỗi các bạn dấu mũ bị lộn nhé!

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?