Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(2n+1;3n+1) là d
Ta có:
[3(2n+1)]-[2(3n+1)] chia hết d
=>[6n+3]-[6n+2] chia hết d
=>1 chia hết d
=>d=1
Vậy UC(2n+1;3n+1)=1
\(G\text{ọi}dl\text{à}UCLN\left(2n+1;3n+1\right)\\ =>2n+1v\text{à}3n+1⋮d\\ =>\left(2n+1\right)-\left(3n+1\right)⋮d\\ =>3\left(2n+1\right)-\left(2\left(3n+1\right)\right)⋮d\)
\(=>6n+3-6n-2⋮d\\ =1⋮d\\ =>d=1\)
Vậy UCLN(2n+1;3n+1) là 1 hay UC (2n+1;3n+1) là 1
3n + 1 và 5n + 4 là hai số nguyên tố cùng nhau
=? ƯCLN của chúng = 1
a: Gọi d=UCLN(2n+1;6n+5)
\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên n=1
=>ƯCLN(2n+1;6n+5)=1
=>ƯC(2n+1;6n+5)={1;-1}
b: Gọi d=ƯCLN(2n+1;3n+1)
\(\Leftrightarrow6n+3-6n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(5n+3;2n+1)
\(\Leftrightarrow10n+6-10n-5⋮d\)
\(\Leftrightarrow1⋮d\)
=>ƯC(5n+3;2n+1)={1;-1}
a, bạn ghi lại đề nhé
b, gọi UCLN là d
=>2n+1 chia hết cho d=>2n+1 .3 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>3n+1 .2 chia hết cho d=>6n+2 chia hết cho d
=>(6n+3)-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1 hoặc -1
=> ƯCLN(2n+1;3n+1)=1;-1
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
Hay 6n+3 chia het cho d(1)
3n+1 chia het cho d=>2(3n+1) chia het cho d
Hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
nếu ý bạn là : 5*n = 5xn hoặc 5n thì giải như sau :
a) ta có 5n + 12 = 5n + 10 + 2 = 5(n + 2 ) + 2 vì đã có 5 ( n+ 2 ) chia hết cho n + 2 nên chỉ cần 2 chia hết cho n+2 là được .
vậy chỉ có thể chọn n = 0
b) cũng như cách phân tích như ở phần a ta có : 5n + 7 = 5n + 5 + 2 = 5 ( n + 1 ) + 2 (1)
tương tự ta có : 2n + 3 = 2n + 2 + 1 = 2( n + 1 ) + 1 (2)
xét (1 ) ta có 5 (n +1 ) +2 = 5 ( n + 1 ) + (1 + 1) => nếu n = 1 thì (1) có Ư là : 2 và 1
xét (2) ta có 2 ( n + 1 ) + 1 = 2( n + 1 ) + ( 0 + 1 )=>nếu n = 0 thi (2) cóƯ là : 1
vậy (1) và (2) chỉ có 1 Ư chung là 1 nên chúng là 2 số NT cùng nhau
c) 5n + 12 = 5n + 10 + 2 = 5 ( n + 2 ) + 2 ( đpcm )
(-8)= -23
(-16)= -24
(-12)= -22.3
Vì -8,-16,-12 đều có số (-2) nên ước chung lớn nhất của -8,-16,-12 là -2
Lời giải:
Gọi $d=ƯCLN(5n+1, 3n+2)$
$\Rightarrow 5n+1\vdots d; 3n+2\vdots d$
$\Rightarrow 5(3n+2)-3(5n+1)\vdots d$
$\Rightarrow 7\vdots d$
$\Rightarrow d=1$ hoặc $d=7$