Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu đừng lo,mik có thể giải toán cho cậu nhưng bài nào khó quá với tầm của mik thì mik sorry nha!Rất vui khi được làm wen zới cậu
A B C I D E F M N H P Q
Bổ đề: Xét tam giác ABC vuông tại A, đường phân giác trong AD. Khi đó \(\frac{1}{AC}+\frac{1}{AB}=\frac{\sqrt{2}}{AD}\).
Phép chứng minh bổ đề rất đơn giản (Gợi ý: Kẻ DH,DK lần lượt vuông góc với AB,AC)
Quay trở lại bài toán: Gọi \(r\) là bán kính của đường tròn (I)
Áp dụng Bổ đề vào \(\Delta\)NAM có \(\frac{1}{AM}+\frac{1}{AN}=\frac{\sqrt{2}}{AI}\)hay \(\frac{2}{AC}+\frac{1}{AN}=\frac{\sqrt{2}}{r\sqrt{2}}=\frac{1}{r}\)
Từ đó \(\frac{1}{AN}=\frac{AC-2r}{r.AC}\Rightarrow AN=\frac{r.AC}{AC-2r}\)
Gọi AI cắt FD tại Q. Dễ thấy ^QDC = ^BDF = 900 - ^ABC/2 = 1/2(^BAC + ^ACB) = ^QIC
Suy ra tứ giác CIDQ nội tiếp => ^CQI = ^CDI = 900. Do đó \(\Delta\)AQC vuông cân tại Q
Từ đó, áp dụng hệ quả ĐL Thales, ta có:
\(\frac{AP}{r}=\frac{AP}{ID}=\frac{QA}{QI}=1+\frac{AN}{QM}=1+\frac{2AN}{AC}\)
\(\Rightarrow AP=\frac{r.AC+2r.AN}{AC}=\frac{r.AC+2r.\frac{r.AC}{AC-2r}}{AC}=r+\frac{2r^2}{AC-2r}=\frac{r.AC}{AC-2r}=AN\)
Vậy nên \(\Delta\)ANP cân tại A (đpcm).