Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-1}{6}+\frac{1}{6}+0=0\)
\(\frac{-1}{3}+\frac{1}{3}+0=0\)
\(\frac{-1}{2}+\frac{1}{2}+0=0\)
A=\(\frac{7}{10}\)*(\(\frac{10}{3\cdot13}\)+\(\frac{10}{13\cdot23}\)+\(\frac{10}{23\cdot33}\)+\(\frac{10}{43\cdot53}\)+\(\frac{10}{53\cdot63}\))
A=\(\frac{7}{10}\)*(\(\frac{1}{3}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{23}\)+\(\frac{1}{23}\)-\(\frac{1}{33}\)+\(\frac{1}{43}\)-\(\frac{1}{53}\)+\(\frac{1}{53}\)-\(\frac{1}{63}\))
A=\(\frac{7}{10}\)*(\(\frac{1}{3}\)-\(\frac{1}{33}\)+\(\frac{1}{43}\)-\(\frac{1}{63}\))
A=\(\frac{7}{10}\)*(\(\frac{10}{33}\)+\(\frac{20}{2709}\))
A=\(\frac{7}{10}\)*\(\frac{9250}{29799}\)
A=\(\frac{925}{4257}\)
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
20=1
bằng 1 chứ j