Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chính xác là của lớp 9 nè!!
Đề bạn ghi sai hay sao ý, pn xem lại xem, mk sửa đề như dưới, pn tham khảo:
Ta có: \(D=\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\dfrac{a+b}{\sqrt{ab}}\right)\)
\(=\dfrac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(b-a\right)}{\sqrt{ab}\left(b-a\right)}\right)\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}\left(b-a\right)}\right)\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{\sqrt{ab}\left(a+b\right)}{\sqrt{ab}\left(b-a\right)}=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}:\dfrac{a+b}{b-a}\)
\(=\dfrac{a+b}{\sqrt{a}+\sqrt{b}}.\dfrac{b-a}{a+b}=\dfrac{b-a}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(\sqrt{b}-\sqrt{a}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{b}-\sqrt{a}\)
\(D=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\dfrac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a^2-b^2\right)}{\sqrt{ab}\left(a-b\right)}\)
\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}{\sqrt{ab}\left(a-b\right)}\)
\(=\left(\dfrac{a+b\sqrt{a}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\dfrac{-\sqrt{ab}\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}\)
\(=\dfrac{a+b+b\sqrt{a}-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{-\left(a-b\right)}{a+b}\)
\(=\dfrac{-\left(a+b+b\sqrt{a}-\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
a: \(B=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b: Để |B|=B thì B>=0
=>\(\sqrt{x}-2>=0\)
hay x>4
\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )
\(b.A>\dfrac{1}{3}\) ⇔ \(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)
⇔ \(3-\sqrt{x}>0\)
⇔ \(x< 9\)
Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?
\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)
⇒ \(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)
\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .
\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .
\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
Mạn phép ko chép lại đề , mk làm luôn
a) \(D=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}+\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{1-ab}\right]:\dfrac{a+b+2ab+1-ab}{1-ab}\)\(D=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}+1-\sqrt{ab}\right)}{1-ab}.\dfrac{1-ab}{a+b+ab+1}\)
\(D=\dfrac{2\left(\sqrt{a}+\sqrt{b}\right)}{\left(b+1\right)\left(a+1\right)}\)
D=A/B
a)
B=1+(a+b+2ab)/(1-ab)=(a+b+ab)/(1-ab)
dk: a,b≥0; a.b≠1
1/B=(1-ab)/(a+b+ab)
A=√a+√b)[(1+√ab)+(1-√ab)]/(1-ab)=2(√a+√b)/(1-ab)
D=2(√a+√b)/[(a+1)(b+1)]
b)
a=2/(√3+2)=2(2-√3)/[(2+√3)(2-√3)]=2(2-√3)=(√3-1)^2