![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ĐKXĐ:x>0
P=\(\left(\frac{3}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\left(vớix>0\right)\)
=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{1}{\sqrt{x}+1}\)
=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{1}{\sqrt{x}+1}\)
= \(\left[\frac{3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\frac{1}{\sqrt{x}+1}\)
=\(\frac{4-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{1}\)
=\(\frac{4-\sqrt{x}}{\sqrt{x}-1}\)
b)Để P=\(\frac{5}{4}\left(vớix>0\right)\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}=\frac{5}{4}\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}-\frac{5}{4}=0\)
\(\Leftrightarrow\frac{4\left(4-\sqrt{x}\right)}{4\left(\sqrt{x}-1\right)}-\frac{5\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-1\right)}=0\)
\(\Rightarrow16-4\sqrt{x}-5\sqrt{x}+5=0\)
\(\Leftrightarrow21-9\sqrt{x}=0\)
\(\Leftrightarrow-9\sqrt{x}=-21\)
\(\Leftrightarrow\sqrt{x}=\frac{7}{3}\)
\(\Leftrightarrow x=\frac{21}{9}\)
Vậy:Để P=\(\frac{5}{4}\)thì x=\(\frac{21}{9}\)
c)Còn phần c thì mik chịu
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
sữa đề chút
a) đkxđ : \(x>2;x\ne3\)
b) ta có : \(A=\dfrac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}=\dfrac{\sqrt{\left(\sqrt{x-2}-1\right)^2}}{\sqrt{x-2}-1}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: (1-x)(2x-1)>=0
\(\Rightarrow\hept{\begin{cases}1-x>=0\\2\text{x}-1>=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{1}{2}\end{cases}}\)
vậy 1/2<=x<=1
bé hơn hoặc bằng nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(\orbr{\begin{cases}x>\sqrt{2}+1\\\frac{-1}{2}\le x< 1-\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{1}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}.\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(A=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(A=x-1\)
(ĐKXĐ là: \(x>0;x\ne1\))
ĐKXĐ của \(\sqrt{x+1}\) và \(\sqrt{x-1}\) lần lượt là \(x\ge-1\) và \(x\ge1\)