\(\sqrt{A}=B\)

cho em sin đk chứ ở trường em 1 người thì tìm ra 2đk...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

mà bà cô dạy đội tuyển huyện toán ở quê em là phải thêm \(A\ge0\)

nửa bà mới chấm bài á

NV
14 tháng 9 2020

\(\sqrt{A}=B\Leftrightarrow\left\{{}\begin{matrix}B\ge0\\A=B^2\end{matrix}\right.\)

Cái đầu là thừa

2 tháng 3 2019

a)

\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)

\(\)Ta có

\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)

=> Bất phương trình đàu tiên sai, hệ bất phương trình sai

b)

\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)

2 tháng 3 2019

bạn ơi giải giúp mình câu c, e, f giùm mình với ạ .

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

c)

\(\left\{\begin{matrix} -x^2+4x-7< 0\\ x^2-2x-1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2-4x+7>0\\ x^2-2x+1\geq 2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x-2)^2+3>0\\ (x-1)^2-2\geq 0\end{matrix}\right.\Leftrightarrow (x-1)^2-2\geq 0\Leftrightarrow \left[\begin{matrix} x-1\geq \sqrt{2}\\ x-1\leq -\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\geq \sqrt{2}+1\\ x\leq 1-\sqrt{2}\end{matrix}\right.\)

d)

\(\left\{\begin{matrix} -2x^2-5x+4< 0\\ -x^2-3x+10>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x^2+5x-4>0\\ (2-x)(x+5)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2(x+\frac{5}{4})^2-\frac{57}{8}>0\\ (2-x)(x+5)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x+\frac{5}{4}-\frac{\sqrt{57}}{4})(x+\frac{5}{4}+\frac{\sqrt{57}}{4})>0\\ (2-x)(x+5)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{-5+\sqrt{57}}{4}\\ x< \frac{-5-\sqrt{57}}{4}\end{matrix}\right.\\ -5< x< 2\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} -5< x< \frac{-5-\sqrt{57}}{4}\\ \frac{\sqrt{57}-5}{4}< x< 2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 5 2020

a)

\(\left\{\begin{matrix} 2x^2+9x+7>0\\ x^2+x-6< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(2x+7)>0\\ (x-2)(x+3)< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>-1\\ x< \frac{-7}{2}\end{matrix}\right.\\ -3< x< 2\end{matrix}\right.\Rightarrow -1< x< 2\)

b) \(\left\{\begin{matrix} 2x^2+x-6>0\\ 3x^2-10x+3\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (2x-3)(x+2)>0\\ (x-3)(3x-1)\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x>\frac{3}{2}\\ x< -2\end{matrix}\right.\\ \left[\begin{matrix} x\geq 3\\ x\leq \frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow \left[\begin{matrix} x\geq 3\\ x< -2\end{matrix}\right.\)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0
7 tháng 4 2017

a) Hình a:


b)Hình b:
NV
18 tháng 2 2020

a/ \(x^2+2x-15< 0\Rightarrow-5< x< 3\)

TH1: \(m=-1\) ko thỏa mãn

TH2: \(m>-1\Rightarrow x\ge\frac{3}{m+1}\)

Để BPT đã cho có nghiệm thì: \(\frac{3}{m+1}< 3\)

\(\Leftrightarrow m+1>1\Rightarrow m>0\)

TH3: \(m< -1\Rightarrow x\le\frac{3}{m+1}\)

Để BPT có nghiệm \(\Rightarrow\frac{3}{m+1}>-5\)

\(\Leftrightarrow3< -5\left(m+1\right)\)

\(\Leftrightarrow5m< -8\Rightarrow m< -\frac{8}{5}\)

Vậy để BPT đã cho có nghiệm thì \(\left[{}\begin{matrix}m>0\\m< -\frac{8}{5}\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)

Xét bpt \(\left(m-1\right)x\ge2\)

TH1: \(m=1\) ko thỏa mãn

TH2: \(m>1\Rightarrow x\ge\frac{2}{m-1}\)

Để BPT có nghiệm \(\Rightarrow4\le\frac{2}{m-1}\)

\(\Rightarrow2\left(m-1\right)\le1\Rightarrow m\le\frac{3}{2}\)

Kết hợp điều kiện \(\Rightarrow1< m\le\frac{3}{2}\)

TH3: \(m< 1\Rightarrow x\le\frac{2}{m-1}\)

Để BPT có nghiệm \(\Rightarrow\frac{2}{m-1}\ge-1\)

\(\Leftrightarrow2\le1-m\Rightarrow m\le-1\)

Vậy để BPT đã cho có nghiệm thì: \(\left[{}\begin{matrix}m\le-1\\1< m\le\frac{3}{2}\end{matrix}\right.\)