Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có ap//bc nên ae/ec=ep/eb
ta có ab//cq nên ae/ec=be/eq
vậy ep/eb=be/eq nên eb^2=ep.eq
ap//bc nên ap/bc=ae/ec
nên ab/cq=ap/bc
vậy ap.cq=ab.bc ko đổi
làm cho những người sau có thể bt mà xem
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
a) \(y=m\left(2x-1\right)+3-2x,\forall m\)
\(\Leftrightarrow m\left(2x-1\right)+3-2x-y=0,\forall m\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3-2x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=2\end{cases}}\)
Vậy khi \(m\)thay đổi đường thẳng \(\left(d\right)\)luôn đi qua điểm có tọa độ \(\left(\frac{1}{2},2\right)\).
b) \(y=m\left(2x-1\right)+3-2x=\left(2m-2\right)x+3-m\)
\(\Leftrightarrow y-\left(2m-2\right)x+m-3=0\)
Khoảng cách từ điểm \(O\left(0,0\right)\)đến đường thẳng \(d\)là:
\(d=\frac{\left|m-3\right|}{\sqrt{\left(2m-2\right)^2+1^2}}\Leftrightarrow d^2\left(4m^2-8m+5\right)=m^2-6m+9\)
\(\Leftrightarrow m^2\left(4d^2-1\right)-2m\left(4d^2-3\right)+5d^2-9=0\)(1)
Với \(m=0\): \(d=\frac{3\sqrt{5}}{5}\).
Với \(m\ne0\)ta coi \(m\)là phương trình bậc \(2\)ẩn \(m\)tham số \(d\).
Để phương trình có nghiệm thì
\(\Delta'\ge0\Leftrightarrow\left(4d^2-3\right)^2-\left(5d^2-9\right)\left(4d^2-1\right)\ge0\)
\(\Leftrightarrow17d^2-4d^4\ge0\)
\(\Leftrightarrow\frac{-\sqrt{17}}{2}\le d\le\frac{\sqrt{17}}{2}\).
Vây GTLN cần tìm là \(d=\frac{\sqrt{17}}{2}\).