Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
=\(\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
=\(\left(\frac{13}{14}\right)^2\)
=\(\frac{13^2}{14^2}\)
=\(\frac{169}{196}\)
b.\(\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
=\(\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
=\(\left(\frac{-1}{12}\right)^2\)
=\(\frac{-1^2}{12^2}\)
=\(\frac{1}{144}\).
c.Phần C bn viết lại đề bài đi,mk ko hiểu
d.\(\left(\frac{-10}{3}\right)^5.\left(\frac{-6}{5}\right)^4\)
=\(\frac{-10^5}{3^5}.\left(\frac{-6^4}{5^4}\right)\)
=\(\frac{-100000}{243}.\frac{1296}{625}\)
=\(\frac{-2560}{3}\)
Không biết đúng ko nữa
Bấm máy tính:
E = \(\frac{4}{3}+\frac{1}{4}+\frac{3}{5}:\frac{4}{5}\)
E = \(\frac{4}{3}+\frac{1}{4}+\frac{3}{4}\)
E = \(\frac{7}{3}\)
Vậy E = \(\frac{7}{3}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
=> \(2A-A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
=> \(A=1+\frac{3}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
=> \(2A=2+\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{88}}-\frac{100}{2^{99}}\)
=> \(2A-A=1+\frac{3}{2}+\frac{1}{2^2}-\frac{3}{2^2}-\frac{1}{2^{99}}-\frac{100}{2^{99}}+\frac{100}{2^{100}}\)
=> \(A=2-\frac{102}{2^{100}}\)
\(4.\left(\frac{1}{4}\right)^2+25\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3=4.\frac{1}{16}+25\left(\frac{27}{64}.\frac{64}{125}\right).\frac{8}{27}\)
\(=\frac{1}{4}+25.\frac{27}{125}.\frac{8}{27}=\frac{1}{4}+\frac{8}{5}=\frac{37}{20}\)
\(2^3+3\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8=8+3-1+4.2-8=10\)
\(E=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)
\(E=\frac{\frac{4}{5}:\frac{4}{5}:1,25}{\frac{16}{25}-\frac{1}{25}}+\frac{\left(\frac{27}{25}-\frac{2}{25}\right).\frac{7}{4}}{\left(\frac{59}{9}-\frac{13}{4}\right).\frac{36}{17}}+\frac{6}{5}.\frac{1}{2}.\frac{5}{4}\)
\(E=\frac{1:\frac{5}{4}}{\frac{3}{5}}+\frac{1.\frac{7}{4}}{\frac{119}{36}.\frac{36}{17}}+\frac{3}{4}\)
\(E=\frac{4}{5}.\frac{5}{3}+\frac{\frac{7}{4}}{7}+\frac{3}{4}\)
\(E=\frac{4}{3}+\frac{7}{4}.\frac{1}{7}+\frac{3}{4}\)
\(E=\frac{4}{3}+\frac{1}{4}+\frac{3}{4}\)
\(E=\frac{4}{3}+1=\frac{7}{3}\)
\(1\dfrac{1}{2}+2\dfrac{2}{3}+3\dfrac{3}{4}+...+50\dfrac{50}{51}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{51}\)
\(=\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3\dfrac{3}{4}+\dfrac{1}{4}\right)+...+\left(50\dfrac{50}{51}+\dfrac{1}{51}\right)\)
\(=2+3+4+...+51\)
\(=\dfrac{50\left(51+2\right)}{2}\)
=1325
câu hỏi của bạn là j vậy.