K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\text{Δ}=\left(2m\right)^2-4\cdot1\cdot\left(-3m-2\right)=4m^2+12m+8=4m^2+12m+9-1=\left(2m+3\right)^2-1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left(2m+3\right)^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+3>1\\2m+3< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m>-2\\2m< -4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=-3m-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x_2=-4m-1\\x_1+x_2=-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-3m-2\)

\(\Leftrightarrow\dfrac{-4m-1}{5}\cdot\dfrac{-6m+1}{5}=-3m-2\)

\(\Leftrightarrow\left(-4m-1\right)\left(-6m+1\right)=25\left(-3m-2\right)\)

\(\Leftrightarrow24m^2-4m+6m-1=-75m+50\)

\(\Leftrightarrow24m^2+2m-1+75m-50=0\)

\(\Leftrightarrow24m^2+77m-51=0\)

Đến đây bạn tự làm nhé

10 tháng 9 2021

bạn giải hay quá

 

17 tháng 11 2018

a, * Với m + 1 = 0 => m = -1

Phương trình trở thành:    -2x - 4 = 0  <=>  2x = -4  <=> x = -2

m = -1 phương trình có nghiệm x = -2

* Với m + 1 \(\ne\)\(\Leftrightarrow\)m\(\ne\) -1

\(\Delta'\) =( m + 2 )-(m+1) (m-3) = m + 4m + 4 - m2 + 3m - m + 3 

         = 6m + 7

Phương trình có nghiệm :    \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\) 6m + 7 \(\ge\) 0 \(\Leftrightarrow\)6m \(\ge\) -7    \(\Leftrightarrow\)\(\ge-\frac{7}{6}\)

Phương trình có nghiệm   \(\Leftrightarrow\) m \(\ne\) -1 ; m \(\ge\)\(-\frac{7}{6}\)

Kết luận : Phương trình có nghiệm \(\Leftrightarrow m\ge-\frac{7}{6}\)

b, Điều kiện : m \(\ge-\frac{7}{6};m\ne-1\)

Theo hệ thức Viet , ta có \(\hept{\begin{cases}S=x_1+x_2=\frac{2\left(m+2\right)}{m+1}\\P=x._1x_2=\frac{m-3}{m+1}\end{cases}}\)

Do đó \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)

\(\Leftrightarrow16x_1x_2+4x_1+4x_2+1=18\)

\(\Leftrightarrow16x_1x_2+4\left(x_1+x_2\right)-17=0\)

\(\Leftrightarrow\frac{16\left(m-3\right)}{m+1}+\frac{8\left(m+2\right)}{m+1}-17=0\)

\(\Leftrightarrow16\left(m-3\right)+8\left(m+2\right)-17\left(m+1\right)=0\)

\(\Leftrightarrow16m-48+8m+16-17m-17=0\)

\(\Leftrightarrow7m-49=0\Leftrightarrow7m=49\Leftrightarrow m=7\)

m = 7 thỏa mãn điều kiện \(\hept{\begin{cases}m\ne-1\\m\ge-\frac{7}{6}\end{cases}}\)

Vậy \(m=7\) thì phương trình có 2 nghiệm \(x_1;x_2\)thỏa mãn:

\(4\left(x_1+1\right)\left(4x_2+1\right)=18\)

24 tháng 4 2019

em chịu em lớp 5

20 tháng 5 2020

Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{2m+4}{1}\\x_1x_2=\frac{2m+3}{1}\end{cases}}\)

\(\left(4x_1+1\right)\left(4x_2+1\right)=25\)

\(< =>16x_1x_2+4x_1+4x_2+1=25\)

\(< =>16\frac{2m+3}{1}+4\frac{2m+4}{1}=24\)

\(< =>32m+48+8m+16=24\)

\(< =>40m=24-64=-40\)

\(< =>m=-1\)

Δ=(2m)^2-4(m-1)

=4m^2-4m+4

=4m^2-4m+1+3=(2m-1)^2+3>0

=>Phương trình có hai nghiệm pb

x1<1<x2

=>x2-1>0 và x1-1<0

=>(x1-1)(x2-1)<0

=>x1x2-(x1+x2)+1<0

=>m-1-2m+1<0

=>-m<0

=>m>0