Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1. Để đths đi qua $A(-2;-2)$ thì:
$y_A=(m-2)x_A^2$
$\Leftrightarrow -2=(m-2)(-2)^2$
$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.
PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:
$(\frac{3}{2}-2)x^2=-1$
$\Leftrightarrow \frac{-1}{2}x^2=-1$
$\Leftrightarrow x^2=2$
$\Leftrightarrow x=\pm \sqrt{2}$
Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$
G/s: đồ thị hàm số đi qua điểm \(I\left(x_0;y_0\right)\)cố định
Khi đó với mọi m ta có: \(y_0=\left(2m-3\right)x_0+4m-2\)
<=> \(\left(y_0+3x_0+2\right)-\left(2x_0+4\right)m=0\)
<=> \(\hept{\begin{cases}y_0+3x_0+2=0\\2x_0+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y_0=4\\x_0=-2\end{cases}}\)
Vậy đồ thị hàm số qua điểm I ( -2; 4) cố định
Bài 3: Cho hàm số y=(m-1)x + 2m. Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = 5
Để đths trên là hầm bậc nhất khi m - 1 \(\ne\)0 <=> \(m\ne1\)
đths y = (m-1)x + 2m cắt trục hoành taị điểm có hoành độ bằng 5
Thay x = 5 ; y = 0 ta được : \(5\left(m-1\right)+2m=0\Leftrightarrow7m-5=0\Leftrightarrow m=\frac{5}{7}\)( tmđk )
a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)
\(\Leftrightarrow m\ne3\)
b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)
\(\Leftrightarrow m>3\)
Vậy ...
c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0
\(\Leftrightarrow a>0\)
\(\Leftrightarrow3-m>0\)
\(\Leftrightarrow m< 3\)
Vậy ...
a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)
hay \(m\ne3\)
b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)
\(\Leftrightarrow m>3\)
c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0
hay m<3
a) Đk: \(\hept{\begin{cases}x-m-1\ge0\\4x-m\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m+1\le x\\\frac{m}{4}\le x\\x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1\le0\\m\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le-1\\m\le0\end{cases}}\)
\(\Leftrightarrow m\le-1\)