K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

a) Ta có ˆBAH+ˆBAD+ˆDAM=180∘BAH^+BAD^+DAM^=180∘ (kề bù)

Mà ˆBAD=90∘⇒ˆBAH+ˆDAM=90∘BAD^=90∘⇒BAH^+DAM^=90∘ (1)

Trong tam giác vuông AMD, ta có:

ˆAMD=90∘⇒ˆDAM+ˆADM=90∘(2)AMD^=90∘⇒DAM^+ADM^=90∘(2)

Từ (1) và (2) suy ra: ˆBAH=ˆADMBAH^=ADM^

Xét hai tam giác vuông AMD và BHA, ta có:

ˆAMD=ˆBAH=90∘AMD^=BAH^=90∘

AB = AD (gt)

ˆBAH=ˆADMBAH^=ADM^ (chứng minh trên)

Suy ra: ∆AMD = ∆BHA (cạnh huyền, góc nhọn)

Vậy: AH = DM (2 cạnh tương ứng) (3)

b) Ta có: ˆHAC+ˆCAE+ˆEAN=180∘HAC^+CAE^+EAN^=180∘ (kề bù)

Mà ˆCAE=90∘(gt)⇒ˆHAC+ˆEAN=90∘CAE^=90∘(gt)⇒HAC^+EAN^=90∘ (4)

Trong tam giác vuông AHC, ta có:

ˆAHC=90∘⇒ˆHAC+ˆHCA=90∘(5)AHC^=90∘⇒HAC^+HCA^=90∘(5)

Từ (4) và (5) suy ra: ˆHCA=ˆEANHCA^=EAN^

Xét hai tam giác vuông AHC và ENA, ta có:

ˆAHC=ˆENA=90∘AHC^=ENA^=90∘

AC = AE (gt)

ˆHCA=ˆEANHCA^=EAN^ (chứng minh trên)

Suy ra: ∆AHC = ∆ENA (cạnh huyền, góc nhọn)

Vậy AH = EN (2 cạnh tương ứng)

Từ (3) và (6) suy ra : DM = EN

Vì DM⊥AHDM⊥AH và EN⊥AHEN⊥AH nên DM // EN (2 đường thẳng cùng vuông góc đường thẳng thứ 3)

Gọi O là giao điểm MN và DE

Xét hai tam giác vuông DMO và ENO, ta có:

ˆDMO=ˆENO=90∘DMO^=ENO^=90∘

DM = EN (chứng minh trên)

ˆMDO=ˆNEOMDO^=NEO^ (so le trong)

Suy ra: ∆DMO = ∆ENO (g.c.g) => OD = DE

Vậy MN đi qua trung điểm của DE.

21 tháng 6 2019

bài này dễ mà , bình thường thôi . Bạn tự làm đi nha.

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
17 tháng 8 2019

Ai đon nâu nâu . Tự làm đi . Dễ ợt ra.

4 tháng 6 2020

Dễ mà ko bt lm lêu lêu