\(\left\{{}\begin{matrix}\left(k+1\right)x+ky=2k-1\\kx-y=k^2-2\end{mat...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

a. Thay k=5, ta có hpt:

\(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{11}{26}\\y=\dfrac{3}{26}\end{matrix}\right.\)

Vậy hpt có nghiệm là \(\left(\dfrac{11}{26};\dfrac{3}{26}\right)\)

b.ĐK: \(k\ne-\dfrac{1}{k}\)\(\Leftrightarrow k\forall R\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}kx-y=2\left(1\right)\\kx+k^2y=k\left(2\right)\end{matrix}\right.\)

Trừ hai pt, ta được: \(\left(k^2+1\right)y=k-2\)\(\Leftrightarrow y=\dfrac{k-2}{k^2+1}\)

Thay vào (1), ta có: \(kx=2+\dfrac{k-2}{k^2+1}\)\(\Leftrightarrow x=\dfrac{2k^2+k}{k^3+k}\)\(=\dfrac{2k+1}{k^2+1}\)

\(x+y=\dfrac{3k-1}{k^2+1}\)

\(\dfrac{3k-1}{k^2+1}=\dfrac{-3}{k^2+1}\)

\(\Rightarrow k=\dfrac{-2}{3}\)

27 tháng 2 2020

a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :

\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)

b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)

Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)

Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)

P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

NV
6 tháng 4 2020

a/ Bạn tự giải

b/ Để hệ có vô số nghiệm

\(\Leftrightarrow\frac{k}{1}=\frac{2}{-1}=\frac{2}{1}\)

\(\Rightarrow\) Không tồn tại k thỏa mãn

c/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=2\\kx+2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-1\\\left(k+2\right)x=4\end{matrix}\right.\)

Với \(k=-2\) hệ vô nghiệm (ktm)

Với \(k\ne-2\Rightarrow x=\frac{4}{k+2}\)

\(x+y=5\Leftrightarrow x+\left(x-1\right)=5\)

\(\Leftrightarrow2x=6\Rightarrow x=3\)

\(\Rightarrow\frac{4}{k+2}=3\Rightarrow k+2=\frac{4}{3}\Rightarrow k=-\frac{2}{3}\)

14 tháng 2 2020
  • avt2782845_60by60.jpgNguyễn Lê Phước Thịnh20GP
  • avt2983753_60by60.jpgPhạm Thị Diệu Huyền16GP
  • avt2936543_60by60.jpgVũ Minh Tuấn15GP
  • avt115370_60by60.jpgPhạm Lan Hương13GP
  • avt2711634_60by60.jpgTrần Thanh Phương10GP
  • d1.jpgTrên con đường thành công không có dấu chân của kẻ lười biếng8GP
  • avt3010074_60by60.jpgPhạm Minh Quang7GP
  • avt3099435_60by60.jpgChiyuki Fujito6GP
  • avt3099499_60by60.jpghellokoko6GP
  • avt2922034_60by60.jpgNguyễn Ngọc Lộc

Xin lỗi bạn, mình mới học lớp 7 thôi!!